Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-07-03
Page range: 203-215
Abstract views: 57
PDF downloaded: 0

One new species and a new record of saprobic fungi from Ananas comosus in northern Thailand

Center of Excellence in Fungal Research, Mae Fah Luang University. School of Science, Mae Fah Luang University.
Center of Excellence in Fungal Research, Mae Fah Luang University. School of Science, Mae Fah Luang University.
One new species One new record Anthracocystis Spegazzinia Apiosporaceae Ustilaginaceae Fungi

Abstract

Pineapple is one of the major crops in northern Thailand. Like all the other plants, it has associated with it, a wide range of fungi, which may be saprobic, pathogenic, or endophytic. This study investigated fungi associated with pineapple in Chiang Rai Province, northern Thailand. Based on morphology and multilocus phylogeny of the ITS and LSU sequence data, Anthracocystis ananatum is described as a new species with its detailed asexual morph. Compared to other Anthracocystis species, A. ananatum has a distinctive morphotype that includes septate hyphae, conidigenous cells, and conidiophores. In addition, Spegazzinia tessarthra is reported for the first time as a new host and geographic record. The complete descriptions, photo-micrographs, and phylogenies of the new species Anthracocystis ananatum and a new host and geographic record S. tessarthra are provided and discussed.

References

  1. Abeywickrama, P.D., Jayawardena, R.S., Thakshila, S.A.D., Hyde, K.D., Yan, J., Zhang, W. & Li, X. (2023) Phyto-pathogenic fungi associated with tropical fruit crops in Thailand – 1. Current Research in Environmental & Applied Mycology 13 (1): 347–411. https://doi.org/10.5943/cream/13/1/14
  2. Armand, A., Hyde, K.D. & Jayawardena, R.S. (2023) First Report of Colletotrichum fructicola Causing Fruit Rot and Leaf-Tip Dieback on Pineapple in Northern Thailand. Plants 12 (4): 971. https://doi.org/10.3390/plants12040971
  3. Aquije, G.M.de F.V., Korres, A.M.N., Buss, D.S., Ventura, J.A., Fernandes, P.M.B. & Fernandes, A.A.R. (2011) Effects of leaf scales of different pineapple cultivars on the epiphytic stage of Fusarium guttiforme. Crop Protection 30 (3): 375–378. https://doi.org/10.1016/j.cropro.2010.11.025
  4. Barral, B., Chillet, M., Doizy, A., Grassi, M., Ragot, L., Léchaudel, M., Durand, N., Rose, L.J., Viljoen, A. & Schorr-Galindo, S. (2020) Diversity and toxigenicity of fungi that cause pineapple fruitlet core rot. Toxins 12 (5): 339. https://doi.org/10.3390/toxins12050339
  5. Barral, B., Chillet, M., Léchaudel, M., Lartaud, M., Verdeil, J.L., Conéjéro, G. & Schorr-Galindo, S. (2019) An imaging approach to identify mechanisms of resistance to pineapple fruitlet core rot. Frontiers in Plant Science 10: 1065. https://doi.org/10.3389/fpls.2019.01065
  6. Berkeley, M.J. & Curtis, M.A. (1869) On a collection of Fungi from Cuba. Part. II., including those belonging to the families Gasteromycetes, Coniomycetes, Hyphomycetes, Physomycetes, and Ascomycetes. Botanical Journal of the Linnean Society 10: 341–392. https://doi.org/10.1111/j.1095-8339.1868.tb00648a.x
  7. Borges, A.F., de Alcântara Neto, F., da Silva Matos, K., Júnior, J.E.A.B., Júnior, N.S.M., Moreira, S.I. & de Melo, M.P. (2019) Thielaviopsis ethacetica the etiological agent of sugarcane pineapple sett rot disease in Brazil. Tropical Plant Pathology 44: 460–467. https://doi.org/10.1007/s40858-019-00298-9
  8. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  9. Chanprasartsuk, O.O., Prakitchaiwattana, C., Sanguandeekul, R. & Fleet, G.H. (2010) Autochthonous yeasts associated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during natural fermentation. Bioresource Technology 101 (19): 7500–7509. https://doi.org/10.1016/j.biortech.2010.04.047
  10. Cao, B., Haelewaters, D., Schoutteten, N., Begerow, D., Boekhout, T., Giachini, A.J., Gorjón, S.P., Gunde-Cimerman, N., Hyde, K.D., Kemler, M., Li, G.-J., Liu, D.-M., Liu, X.-Z., Nuytinck, J., Papp, V., Savchenko, A., Savchenko, K., Tedersoo, L., Theelen, B., Thines, M., Tomšovský, M., Toome-Heller, M., Urón, J.P., Verbeken, A., Vizzini, A., Yurkov, A.M., Zamora, J.C. & Zhao, R.-L. (2021) Delimiting species in Basidiomycota: a review. Fungal Diversity 109: 181–237. https://doi.org/10.1007/s13225-021-00479-5
  11. Chethana, K.W.T., Jayawardena, R.S., Chen, Y.J., Konta, S., Tibpromma, S., Abeywickrama, P.D., Gomdola, D., Balasuriya, A., Xu, J., Lumyong, S. & Hyde, K.D. (2021c) Diversity and Function of Appressoria. Pathogens (Basel, Switzerland) 10 (6): 746. https://doi.org/10.3390/pathogens10060746
  12. Chethana, K.W.T., Manawasinghe, I.S., Appadoo, M.A., Gentekaki, E., Raspé, O., Hurdeal, V.G., Bhunjun, C.S., Promputtha, I. & Hyde, K.D. (2021b) What are fungal species and how to delineate them? Fungal Diversity 109 (1): 1–25. https://doi.org/10.1007/s13225-021-00483-9
  13. Chethana, K.W.T., Niranjan, M., Dong, W., Samarakoon, M.C., Bao, D.F., Calabon, M.S., Chaiwan, N., Chuankid, B., Dayarathne, M.C., de Silva, N.I., Devadatha, B., Dissanayake, A.J., Goonasekara, I.D., Huanraluek, N., Jayawardena, R.S., Karunarathna, A., Luo, Z.L., Marasinghe, D.S., Ma, X.Y., Norphanphoun, C., Pem, D., Perera, R.H., Rathnayaka, A.R., Raspé, O., Samarakoon, B.C., Senwanna, C., Sun, Y.R., Tang, X., Thiyagaraja, V., Tennakoon, D.S., Zeng, M., Zeng, X.Y., Zhang, J.Y., Zhang, S.N., Bulgakov, T.S., Camporesi, E., Sarma, V.V., Wang, Y. & Bhat, D.J. (2021a) AJOM new records and collections of fungi: 101-150. Asian Journal of Mycology 4 (1): 113–260. https://doi.org/ 10.5943/ajom/4/1/8
  14. Cole, G.T. (1974) Conidiophore and conidium ontogeny in Spegazzinia tessarthra. Canadian Journal of Botany 52 (6): 1259–1264.
  15. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and high-performance computing. Nature methods 9: 772. https://doi.org/10.1038/nmeth.2109
  16. Green, J. & Nelson, S. (2015) Heart and root rots of pineapple. Plant disease 106: 1–7.
  17. He, M.Q., Zhao, R.L., Hyde, K.D., Begerow, D., Kemler, M., Yurkov, A., McKenzie, E.H., Raspe, O., Kakishima, M., Sanchez-Ramirez, S. & Vellinga, E.C. (2019) Notes, outline and divergence times of Basidiomycota. Fungal Diversity 99: 105–367. https://doi.org/10.1007/s13225-019-00435-4
  18. Hongsanan, S., Hyde, K.D., Phookamsak, R., Wanasinghe, D.N., McKenzie, E.H.C., Sarma, V.V., Lücking, R., Boonmee, S., Bhat, J.D., Liu, N.G., Tennakoon, D.S., Pem, D., Karunarathna, A., Jiang, S.-H., Jones, G.E.B., Phillips, A.J.L., Manawasinghe, I.S., Tibpromma, S., Jayasiri, S.C., Sandamali, D., Jayawardena, R.S., Wijayawardene, N.N., Ekanayaka, A.H., Jeewon, R., Lu, Y.-Z., Phukhamsakda, C., Dissanayake, A.J., Zeng, X.-Y., Luo, Z.-L., Tian, Q., Thambugala, K.M., Dai, D., Samarakoon, M.C., Chethana, K.W.T., Ertz, D., Doilom, M., Liu, J.-K. (Jack), Pérez-Ortega, S., Suija, A., Senwanna, C., Wijesinghe, S.N., Niranjan, M., Zhang, S.-N., Ariyawansa, H.A., Jiang, H.-B., Zhang, J.-F., Norphanphoun, C., de Silva, N.I., Thiyagaraja, V., Zhang, H., Bezerra, J.D.P., Miranda-González, R., Aptroot, A., Kashiwadani, H., Harishchandra, D., Sérusiaux, E., Abeywickrama, P.D., Bao, D.-F., Devadatha, B., Wu, H.-X., Moon, K.H., Gueidan, C., Schumm, F., Bundhun, D., Mapook, A., Monkai, J., Bhunjun, C.S., Chomnunti, P., Suetrong, S., Chaiwan, N., Dayarathne, M.C., Yang, J., Rathnayaka, A.R., Xu, J.-C., Zheng, J., Liu, G., Feng, Y. & Xie, N. (2020) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11 (1): 1553–2107. https://doi.org/10.5943/mycosphere/11/1/13
  19. Hossain, M.F. (2016) World pineapple production: An overview. African Journal of Food, Agriculture, Nutrition and Development 16 (4): 11443-11456. https://doi.org/10.18697/ajfand.76.15620
  20. Ibrahim, N.F., Mohd, M.H., Mohamed Nor, N.M.I. & Zakaria, L. (2016) Fusarium fujikuroi causing fusariosis of pineapple in peninsular Malaysia. Australasian Plant Disease Notes 11: 1–6. https://doi.org/10.1007/s13314-016-0206-5
  21. Jayasiri, S.C., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Jeewon, R., Phillips, A.J.L., Bhat, D.J., Wanasinghe, D.N., Liu, J.K., Lu, Y.Z., Kang, J.C., Xu, J. & Karunarathna, S.C. (2019) Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10 (1): 1–186. https://10.5943/mycosphere/10/1/1
  22. Jayawardena, R.S., Hyde, K.D., Gomes de Farias, A.R.G., Bhunjun, C.S., Ferdinandez, H.S., Manamgoda, D.S., Udayanga, D., Herath, I.S., Thambugala, K.M., Manawasinghe, I.S., Gajanayake, A.J., Samarakoon, B.C., Bundhun, D., Gomdola, D., Huanraluek, N., Sun, Y.-R., Tang, X., Promputtha, I. & Thines, M. (2021) What is a species in fungal plant pathogens?. Fungal Diversity 109 (1): 239–266. https://doi.org/10.1007/s13225-021-00484-8
  23. Joomwong, A.D.I.S.A.K. & Sornsrivichai, J. (2006) Impact of cropping season in northern Thailand on the quality of smooth cayenne pineapple. II. Influence on physico-chemical attributes. International Journal of Agriculture and Biology 8 (6): 330–336.
  24. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic acids research 30 (14): 3059–3066. https://doi.org/10.1093/nar/gkf436
  25. Li, S., Yang, M., Yao, T., Xia, W., Ye, Z., Zhang, S., Li, Y., Zhang, Z. & Song, R. (2023) Diploid mycelia of Ustilago esculenta fails to maintain sustainable proliferation in host plant. Frontiers in microbiology 14: 1199907. https://doi.org/10.3389/fmicb.2023.1199907
  26. Maharachchikumbura, S.S.N., Chen, Y., Ariyawansa, H.A., Hyde, K.D., Haelewaters, D., Perera, R.H., Samarakoon, M.C., Wanasinghe, D.N., Bustamante, D.E., Liu, J.-K., Lawrence, D.P., Cheewangkoon, R. & Stadler, M. (2021) Integrative approaches for species delimitation in Ascomycota. Fungal Diversity 109 (1): 155–179. https://doi.org/10.1007/s13225-021-00486-6
  27. Manawasinghe, I.S., Phillips, A.J.L., Xu, J., Balasuriya, A., Hyde, K.D., Stępień, Ł., Harischandra, D.L., Karunarathna, A., Yan, J., Weerasinghe, J., Luo, M., Dong, Z. & Cheewangkoon, R. (2021) Defining a species in fungal plant pathology: beyond the species level. Fungal Diversity 109 (1): 267–282. https://doi.org/10.1007/s13225-021-00481-x
  28. McTaggart, A.R., Shivas, R.G., Geering, A.D., Vanky, K. & Scharaschkin, T. (2012) Taxonomic revision of Ustilago, Sporisorium and Macalpinomyces. Persoonia 29 (1): 116–132. https://doi.org/10.3767/003158512X661462
  29. McTaggart, A.R., Shivas, R.G., Boekhout, T., Oberwinkler, F., Vánky, K., Pennycook, S.R. & Begerow, D. (2016) Mycosarcoma (Ustilaginaceae), a resurrected generic name for corn smut (Ustilago maydis) and its close relatives with hypertrophied, tubular sori. IMA fungus 7 (2): 309–315. https://doi.org/10.5598/imafungus.2016.07.02.10
  30. Munk, A. (1953) The system of the Pyrenomycetes. Dansk Botanisk Arkin 15: 1–163.
  31. Miller, M., Pfeiffer, W.T. & Schwartz, T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop: 14 Nov 2010. pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  32. Oniah, T. & Tawose, F.O. (2018) Fungi associated with black rot disease of pineapple (Ananas comosus L.) fruits and the effects of the disease on nutritional value of the fruits. ISABB Journal of Food and Agricultural Sciences 8 (3): 18–24. https://doi.org/10.5897/ISABB-JFAS2017.0073
  33. Piątek, M., Lutz, M. & Yorou, N.S. (2015) A molecular phylogenetic framework for Anthracocystis (Ustilaginales), including five new combinations (inter alia for the asexual Pseudozyma flocculosa), and description of Anthracocystis grodzinskae sp. nov. Mycological Progress 14: 1–15. https://doi.org/10.1007/s11557-015-1114-3
  34. Rambaut, A. (2014) FigTree v1.4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available at: http://tree.bio.ed.ac.uk/software/figtree (accessed 2 Jul. 2024)
  35. Reinoso, D.M.C., Soesanto, L., Kharisun, K. & Wibowo, C. (2021) Fruit collapse and heart rot disease in pineapple: Pathogen characterization, ultrastructure infections of plant and cell mechanism resistance. Biodiversitas Journal of Biological Diversity 22 (5). https://doi.org/10.13057/biodiv/d220504
  36. Rush, T.A., Albu, S., Kijpornyongpan, T. & Aime, M.C. (2020) Farysia magdalena sp. nov. and description of the anamorph of Anthracocystis heteropogonicola from the Americas. Mycological Progress 19 (9): 921–934. https://doi.org/10.1007/s11557-020-01610-7
  37. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029
  38. Saccardo, P.A. (1880) Conspectus generum fungorum Italiae inferorium. Michelia 2: 1–38.
  39. Samarakoon, B.C., Phookamsak, R., Wanasinghe, D.N., Chomnunti, P., Hyde, K.D., Mckenzie, E.H., Promputtha, I., Xu, J.C., Li, Y.J. (2020) Taxonomy and phylogenetic appraisal of Spegazzinia musae sp. nov. and S.deightonii (Didymosphaeriaceae, Pleosporales) on Musaceae from Thailand. MycoKeys 70: 19. https://doi.org/10.3897/mycokeys.70.52043
  40. Sapak, Z., Mohd Faisol Mahadeven, A.N., Nurul Farhana, M.H., Norsahira, S. & Mohd Zafri, A.W. (2021) A review of common diseases of pineapple: The causal pathogens, disease symptoms, and available control measures. Food Research 5 (4): 1–14. https://doi.org/10.26656/fr.2017.5(S4).004
  41. Senanayake, I.C., Rathnayaka, A.R., Marasinghe, D.S., Calabon, M.S., Gentekaki, E., Lee, H.B. & Xiang, M.M. (2020) Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11 (1): 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20
  42. Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  43. Shivas, R.G. & Vánky, K. (1997) New smuts (Ustilaginales) on grasses from Western Australia. Mycological Research 101: 835–840.
  44. Tanaka, K., Hirayama, K., Yonezawa, H., Sato, G., Toriyabe, A., Kudo, H., Hashimoto, A., Matsumura, M., Harada, Y., Kurihara, Y., Shirouzu, T., & Hosoya, T. (2015) Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75–136. https://doi.org/10.1016/j.simyco.2015.10.002
  45. Tennakoon, D.S., Thambugala, K.M., de Silva, N.I., Suwannarach, N. & Lumyong, S. (2022) A taxonomic assessment of novel and remarkable fungal species in Didymosphaeriaceae (Pleosporales, Dothideomycetes) from plant litter. Frontiers in Microbiology 13: 1016285. https://doi.org/10.3389/fmicb.2022.1016285
  46. Thambugala, K.M., Wanasinghe, D.N., Phillips, A.J.L., Camporesi, E., Bulgakov, T.S., Phukhamsakda, C., Ariyawansa, H.A., Goonasekara, I.D., Phookamsak, R., Dissanayake, A., Tennakoon, D.S., Tibpromma, S., Chen, Y.Y., Liu, Z.Y. & Hyde, K.D. (2017) Mycosphere notes 1–50: Grass (Poaceae) inhabiting Dothideomycetes. Mycosphere 8: 697–796. https://10.5943/mycosphere/8/4/13
  47. Ullmann, L., Wibberg, D., Busche, T., Rückert, C., Müsgens, A., Kalinowski, J. & Blank, L.M. (2022) Seventeen Ustilaginaceae high-quality genome sequences allow phylogenomic analysis and provide insights into secondary metabolite synthesis. Journal of Fungi 8 (3): 269. https://doi.org/10.3390/jof8030269
  48. Vaidya, G., Lohman, D.J. & Meier, R. (2011) Sequence Matrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27 (2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  49. Vánky, K. (1997) Taxonomical studies on Ustilaginales. XV. Mycotaxon 62: 127–150.
  50. Vánky, K. (2003) The smut fungi (Ustilaginomycetes) of Sporobolus (Poaceae). Fungal Diversity 14: 205–241.
  51. Vignassa, M., Meile, J.C., Chiroleu, F., Soria, C., Leneveu-Jenvrin, C., Schorr-Galindo, S. & Chillet, M. (2021) Pineapple mycobiome related to fruitlet core rot occurrence and the influence of fungal species dispersion patterns. Journal of Fungi 7 (3): 175. https://doi.org/10.3390/jof7030175
  52. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238–4246.
  53. White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18 (1): 315–322.
  54. Wijayawardene, N.N., Hyde, K.D., Dai, D.Q., Sánchez-García, M., Goto, B.T., Saxena, R.K., Erdoğdu, M., Selçuk, F., Rajeshkumar, K.C., Aptroot, A., Błaszkowski, J., Boonyuen, N., da Silva, G.A., de Souza, F.A., Dong, W., Ertz, D., Haelewaters, D., Jones, E.B.G., Karunarathna, S.C., Kirk, P.M., Kukwa, M., Kumla, J., Leontyev, D.V., Lumbsch, H.T., Maharachchikumbura, S.S.N., Marguno, F., Martínez-Rodríguez, P., Mešić, A., Monteiro, J.S., Oehl, F., Pawłowska, J., Pem, D., Pfliegler, W.P., Phillips, A.J.L., Pošta, A., He, M.Q., Li, J.X., Raza, M., Sruthi, O.P., Suetrong, S., Suwannarach, N., Tedersoo, L., Thiyagaraja, V., Tibpromma, S., Tkalčec, Z., Tokarev, Y.S., Wanasinghe, D.N., Wijesundara, D.S.A., Wimalaseana, S.D.M.K., Madrid, H., Zhang, G.Q., Gao, Y., Sánchez-Castro, I., Tang, L.Z., Stadler, M., Yurkov, A. & Thines, M. (2022) Outline of Fungi and fungus-like taxa–2021. Mycosphere 13 (1): 53–453. https://10.5943/mycosphere/13/1/2