Abstract
Asparagus dabieshanensis, a new species from the Dabie Mountains, Central China, is described and illustrated. Morphologically, it is similar to A. cochinchinensis (Lour.) Merr. and A. filicinus D. Don, but differs in having long and straight cladodes, and shorter pedicel than that of the last two species. Molecular phylogenetic analysis based on the combined four DNA markers (trnH-psbA, trnD-trnT, ndhF, phyC) indicated that the new species is a sister to A. cochinchinensis with strong support.
References
- Baker, J.G. (1875) Revision of the genera and species of Asparagaceae. The Journal of the Linnean Society. Botany 14 (79): 508–632. https://doi.org/10.1111/j.1095-8339.1875.tb00349.x
- Chen, X.Q. & Tamanian, K.G. (2000) Asparagus. In: Wu, Z.Y., Raven, P.H. & Hong, D.Y. (Eds.) Flora of China. Vol. 24. Science Press & Missouri Botanical Garden Press, Beijing & St. Louis. pp. 208–215.
- Don, D., Hamilton, F. & Wallich, N. (1825) Prodromus florae Nepalensis: sive Enumeratio vegetabilium quae in itinere per Nepaliam proprie dictam et regiones conterminas, ann. 1802–1803. Detexit atque legit d. d. Franciscus Hamilton, (olim Buchanan) Accedunt plantae a. d. Wallich nuperius missae. Missouri Botanical Garden & Peter H. Raven Library, Prodr. Fl. Nepal. 49 pp. https://doi.org/10.5962/bhl.title.86
- Fellingham, A.C. & Meyer, N.L. (1995) New combinations and a complete list of Asparagus. Bothalia 25 (2): 205–209. https://doi.org/10.4102/abc.v25i2.728
- Jessop, J.P. (1966) The genus Asparagus in Southern Africa. Bothalia 9 (1): 31–96. https://doi.org/10.4102/abc.v9i1.1576
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14 (6): 587–589. https://doi.org/10.1038/nmeth.4285
- Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1038/nmeth.4285
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
- Kubota, S., Konno, I. & Kanno, A. (2012) Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theoretical and Applied Genetics 124 (2): 345–354. https://doi.org/10.1007/s00122-011-1709-2
- Linnaeus, C. (1753) Species Plantarum. Stockholm, Laurentius Salvius. 313 pp.
- Malcomber, S.T. & Demissew, S. (1993) The status of Protasparagus and Myrsiphyllum in the Asparagaceae. Kew Bulletin 48 (1): 63–78. https://doi.org/10.2307/4115749
- Merrill, E.D. (1919) Additional notes on the Kwangtung flora. Philippine Journal of Science 15 (3): 230.
- Mousavizadeh, S.J., Gil, J., Castro, P., Hassandokht, M.R. & Moreno, R. (2021) Genetic diversity and phylogenetic analysis in Asian and European Asparagus subgenus species. Genetic Resources and Crop Evolution 68 (8): 3115–3124. https://doi.org/10.1007/s10722-021-01262-w
- Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300
- Norup, M.F., Petersen, G., Burrows, S., Bouchenak-Khelladi, Y., Leebens-Mack, J., Pires, J.C., Linder, H.P. & Seberg, O. (2015) Evolution of Asparagus L. (Asparagaceae): Out-of-South-Africa and multiple origins of sexual dimorphism. Molecular Phylogenetics and Evolution 92: 25–44. https://doi.org/10.1016/j.ympev.2015.06.002
- Obermeyer, A.A. (1983) Protasparagus Oberm., nom. nov.: new combinations. South African Journal of Botany 2 (3): 243–244. https://doi.org/10.1016/S0022-4618(16)30114-0
- Obermeyer, A.A. (1984) Revision of the genus Myrsiphyllum Willd. Bothalia 15 (1,2): 77–78. https://doi.org/10.4102/abc.v15i1/2.1106
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029
- Sheng, W.T. (2022) The complete chloroplast genome of two traditional medical plants: Asparagus cochinchinensis (Lour.) Merr. and Asparagus dauricus Fisch. ex Link. Mitochondrial DNA B 7 (5): 725–726. https://doi.org/10.1080/23802359.2022.2068976
- Sheng, W.T., Deng, J.L., Wang, C. & Kuang, Q. (2023) The garden asparagus (Asparagus officinalis L.) mitochondrial genome revealed rich sequence variation throughout whole sequencing data. Frontiers in Plant Science 14: 1140043. https://doi.org/10.3389/fpls.2023.1140043
- Tian, Y.L., Liu, X., Xu, Y.J., Yu, B.X., Wang, L. & Qu, X.Y. (2023) Comparative and phylogenetic analysis of Asparagus meioclados Levl. and Asparagus munitus Wang et S. C. Chen plastomes and utility of plastomes mutational hotspots. Scientific Reports 13 (1): 15622. https://doi.org/10.1038/s41598-023-42945-x
- Willdenow, C.L. (1808) Myrsiphyllum. Der Gesellschaft Naturforschender Freunde zu Berlin Magazin für die neuesten Entdeckungen in der Gesammten Naturkunde 2: 25.
- Wong, K.H., Kong, B.L., Siu, T.Y., Wu, H.Y., But, G.W., Shaw, P.C. & Lau, D.T. (2022) Complete chloroplast genomes of Asparagus aethiopicus L., A. densiflorus (Kunth) Jessop ‘Myers’, and A. cochinchinensis (Lour.) Merr.: Comparative and phylogenetic analysis with congenerics. PLoS One 17 (4): e0266376. https://doi.org/10.1371/journal.pone.0266376
- Zhang, D., Gao, F.L., Jakovlic, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20 (1): 348–355. https://doi.org/10.1111/1755-0998.13096