Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-18
Page range: 251-264
Abstract views: 163
PDF downloaded: 6

Patterns of intraspecific genetic variation of Andoa berthelotiana (Myuriaceae, Bryophyta) in the Azores (Macaronesia)

cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal. MUHNAC - Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, 58, 1250-102 Lisboa, Portugal.
cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal. MUHNAC - Museu Nacional de História Natural e da Ciência, Universidade de Lisboa, Rua da Escola Politécnica, 58, 1250-102 Lisboa, Portugal.
University of the Azores, CE3C/GBA - Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group & CHANGE - Global Change and Sustainability Institute, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências Agrárias e do Ambiente, Universidade dos Açores, Angra do Heroísmo, 9700-042 Lisboa, Portugal
Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. Leiden University, Leiden, The Netherlands.
AFLP conservation ecology elevation haplotypes trnL-trnF Bryophytes

Abstract

Macaronesia is home to several endemic bryophytes, such as Andoa berthelotiana. Recent genetic studies revealed the existence of two intraspecific lineages within this species, one in Madeira and the Canary Islands and another in the Azores. However, patterns of intraspecific variation within archipelagos, remain a relatively unexplored area of research. In this study we investigate patterns of intraspecific variation of Andoa berthelotiana within the Azorean archipelago and potential associations with elevation. Our investigation is based on the analysis of chloroplast DNA sequences and AFLP data.

The dataset includes trnL-trnF sequences from 23 samples and AFLP data from 34 samples collected in seven of the nine Azorean islands, encompassing elevations of up to 1200 m. For the DNA sequence data haplotype diversity, nucleotide diversity and a statistical parsimony haplotype network were calculated. The AFLP data were analyzed by AMOVA (Analysis of Molecular Variance) and PCoA (Principal Coordinates Analysis). A Chi-Square test was carried out to assess the significance of the relationship between elevation and AFLP groups or trnL-trnF haplotypes, respectively.

The observed intraspecific genetic variation clustered into three trnL-trnF haplotypes and two AFLP groups, without a clear geographical structure across the Azorean archipelago. Group AFLP1 and haplotypes trnL_F1 and trnL_F3 only appeared below 600 m elevation, where low-elevation vegetation (coastal woodlands, lowland forests and montane Laurus azorica forests) prevails, while group AFLP2 and haplotype trnL_F2 occurring along the whole elevational range, but with most samples above 600 m. Associations between elevation and molecular groups were significant according to the Chi-Square test.

Our study reveals the presence of genetic variation within Andoa berthelotiana in the Azorean archipelago. The two main genetic groups do not seem to be related to geographical location of islands nor groups of islands, but rather to elevation. One group exhibits a broader ecological amplitude, whereas the other may be genetically adapted to environmental conditions at lower elevations (below 600 m), which includes the area where the native laurel forests dominate and where anthropogenic activities have altered the majority of natural vegetation. Conservation efforts should therefore not only consider the species Andoa berthelotiana itself, which is associated with natural forest, but also intraspecific genetic diversity of Andoa populations, in particular genotypes restricted to lower elevations.

References

  1. Aiton, W. (1789) Hortus Kewensis; or, a catalogue of the plants cultivated in the Royal Botanic Garden at Kew, vol. 3. George Nicol, London, 547 pp.
  2. Antoine, F. (1857) Die Cupressineen-Gattungen: Arceuthos, Juniperus und Sabina. Friedrich Beck’sche Universitäts-Buchhandlung, Wien, 72 pp., 92 pls.
  3. Aranda, S.C., Gabriel, R., Borges, P.A., Santos, A.M., de Azevedo, E.B., Patiño, J., Hortal, J. & Lobo, J.M. (2014) Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian Islands. PLoS One 9 (7): e101786. https://doi.org/10.1371/journal.pone.0101786
  4. Bolibok-Brągoszewska, H., Targońska, M., Bolibok, L., Kilian, A. & Rakoczy-Trojanowska, M. (2014) Genome-wide characterization of genetic diversity and population structure in Secale. BMC Plant Biology 14: 184. https://doi.org/10.1186/1471-2229-14-184
  5. Brotherus, V.F. (1909) Bryales. In: Engler, H.G.A. & Prantl, K. (Eds.) Die Natürlichen Pflanzenfamilien. Part. I (3). Engelmann, Leipzig. pp. 1217.
  6. Cardot, J. (1897) The Mosses of the Azores. Annual Report of the Missouri Botanical Garden 8: 51–72.
  7. Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. (2002) TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings 2: 184.
  8. Coelho, M.C.M., Gabriel, R., Hespanhol, H., Borges, P.A.V. & Ah-Peng, C. (2021) Bryophyte Diversity along an Elevational Gradient on Pico Island (Azores, Portugal). Diversity 13 (4): 162. https://doi.org/10.3390/d13040162
  9. Collart, F., Hedenäs, L., Broennimann, O., Guisan, A. & Vanderpoorten, A. (2021) Intraspecific differentiation: Implications for niche and distribution modelling. Journal of Biogeography 48 (2): 415−426. https://doi.org/10.1111/jbi.14009
  10. Connor, S.E., van Leeuwen, J.F., Rittenour, T.M., van der Knaap, W.O., Ammann, B. & Björck, S. (2012) The ecological impact of oceanic island colonization – a palaeoecological perspective from the Azores. Journal of Biogeography 39: 1007–1023. https://doi.org/10.1111/j.1365-2699.2011.02671.x
  11. Connor, S.E., van Leeuwen, J.F. & Kuneš, P. (2013) Holocene palaeoclimate and palaeovegetation of the islands of Flores and Pico. In: Fernández-Palacios Carmona, J.M. & Fernández-Palacios, J.M. (Eds.) Climate Change Perspectives from the Atlantic: Past, Present and Future. Servicio de Publicaciones de la Universidad de La Laguna, San Cristobal de La Laguna, pp. 149–162.
  12. Cronberg, N. (2004) Genetic differentiation between populations of the moss Hylocomium splendens from low versus high elevation in the Scandinavian mountain range. Lindbergia 29 (1): 64−72.
  13. Don, D. (1839) VIII. Descriptions of two new genera of the natural family of plants called Coniferae. Transactions of the Linnean Society of London 18 (2): 163−179.
  14. Des Roches, S., Pendleton, L.H., Shapiro, B. & Palkovacs, E.P. (2021) Conserving intraspecific variation for nature’s contributions to people. Nature Ecology & Evolution 5 (5): 574−582. https://doi.org/10.1038/s41559-021-01403-5
  15. Désamoré, A., Laenen, B., Stech, M., Papp, B., Hedenäs, L., Mateo, R. & Vanderpoorten, A. (2012) How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Global Change Biology 18: 2915−2924. https://doi.org/10.1111/j.1365-2486.2012.02752.x
  16. Elias, R.B., Gil, A., Silva, L., Fernández-Palacios, J.M., Azevedo, E.B. & Reis, F. (2016) Natural zonal vegetation of the Azores Islands: characterization and potential distribution. Phytocoenologia 46 (2): 107–123. https://doi.org/10.1127/PHYTO/2016/0132
  17. Forjaz, V.H., Tavares, J.M., Azevedo, E.M.V.B., Nunes, J.C., Santos, R.S., Barreiros, J.P., Gallagher, L., Barcelos, P.J.M., Silva, P.H., Cardigos, F., França, Z.T.M., Dentinho, T., Costa, M,P., Magalhães, L., Rodrigues, M.C., Gonçalves, J.F., Silva, V. & Serpa, V. (2004) The Azores Basic Atlas. In: Forjaz, V.H. (Ed,) Observatório Vulcanológico e Geotérmico dos Açores. Ponta Delgada, Azores, Portugal, 112 pp.
  18. Fernandes, R.M.S., Bastos, L., Miranda, J.M., Lourenço, N., Ambrosius, B.A.C., Noomen, R. & Simons, W. (2006) Defining the plate boundaries in the Azores region. Journal of Volcanology and Geothermal Research 156 (1–2): 1−9. https://doi.org/10.1016/j.jvolgeores.2006.03.019
  19. Franco, J.A. (1960) Lauráceas. Macaronésia. Anais Instituto Superior de Agronomia V–XXIII: 89–104.
  20. Gabriel, R. & Bates, J.W. (2005) Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant ecology 177: 125–144. https://doi.org/10.1007/s11258-005-2243-6
  21. Gabriel, R. & Sérgio, C. (1995) Bryophyte survey for a first planning of conservation areas in Terceira (Açores). Cryptogamica Helvetica 18: 35−41.
  22. Gabriel, R., Homem, N., Couto, A.B., Aranda, S.C. & Borges, P.A. (2011) Azorean bryophytes: a preliminary review of rarity patterns. Açoreana, Supl. 7: 149−206.
  23. Garcia‐Cisneros, A., Palacin, C., Ventura, C.R.R., Feital, B., Paiva, P.C. & Pérez‐Portela, R. (2018) Intraspecific genetic structure, divergence and high rates of clonality in an amphi‐Atlantic starfish. Molecular Ecology 27 (3): 752−772. https://doi.org/10.1111/mec.14454
  24. Godhe, A. & Rynearson, T. (2017) The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philosophical Transactions of the Royal Society B: Biological Sciences 372 (1728): 20160399. https://doi.org/10.1098/rstb.2016.0399
  25. González-Mancebo, J., Draper, I., Lara, F., Marrero, J.D., Muñoz, J., Patiño, J., Romaguera, F. & Vanderpoorten, A. (2009) Amendments to the bryophyte flora of the Cape Verde and Canary Islands. Cryptogamie, Bryologie 30 (4): 433−441.
  26. González-Mancebo, J., Romaguera, F., Ros, R.M., Patiño, J. & Werner, O. (2008) Bryophyte flora of the Canary Islands: an updated compilation of the species list with an analysis of island distribution patterns in the context of the Macaronesian Region. Cryptogamie, Bryologie 29 (4): 315−357.
  27. González-Mancebo, J., Sim-Sim, M., Gabriel, R., Hodgetts, N. & Martins, A. (2019) Andoa berthelotiana. The IUCN Red List of Threatened Species 2019: e.T84711905A87713954. https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T84711905A87713954.en
  28. Gower, J.C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53 (3−4): 325−338. https://doi.org/10.1093/biomet/53.3-4.325
  29. Hammer, Ø. (2021) PAST—Paleontological Statistics, Version 4.03—Reference Manual. Natural History Museum, University of Oslo, Oslo. Available from: https://www.nhm.uio.no./english/research/resources/past (accessed 17 December 2024)
  30. Hedenäs, L. (2016) Intraspecific diversity matters in bryophyte conservation–internal transcribed spacer and rpl16 G2 intron variation in some European mosses. Journal of Bryology 38 (3): 173−182. https://doi.org/10.1080/03736687.2016.1145522
  31. Hedenäs, L. (2019) On the frequency of northern and mountain genetic variants of widespread species: essential biodiversity information in a warmer world. Botanical Journal of the Linnean Society 191 (4): 440−474. https://doi.org/10.1093/botlinnean/boz061
  32. Hedwig, J. (1801) Species muscorum frondosorum: descriptae et tabulis aeneis lxxvii coloratis illustratae. Opus posthumum editum a Friderico Schwaegrichen. Joannis Ambrosii Barthii, Lipsiae, 353 pp. + 77 pls.
  33. Henriques, D.S.G., Rigal, F., Borges, P.A.V., Ah-Peng, C. & Gabriel, R. (2017) Functional diversity and composition of bryophyte water-related traits in Azorean native vegetation. Plant Ecology & Diversity 10 (2−3): 127−137. https://doi.org/10.1080/17550874.2017.1315839
  34. Hodgetts, N., Cálix, M., Englefie, E., Fett, N., Criado, M.G., Patin, L., Nieto, A., Bergamini, A., Bisang, I., Baisheva, E., Campisi, P., Cogo, A., Hallingbäck, T., Konstantinova, N., Lockhart, N., Sabovljevic, M., Schnyder, N., Schröck, C., Sérgio, C., Sim-Sim, M., Vrba, J., Ferreira, C.C., Afonina, O., Blockeel, T., Blom, H., Caspari, S., Gabriel, R., Garcia, C., Garilleti, R., González-Mancebo, J., Goldberg, I., Hedenäs, L., Holyoak, D., Hugonnot, V., Huttunen, S., Ignatov, M., Ignatova, E., Infante, M., Juutinen, R., Kiebacher, T., Köckinger, H., Kučera, J., Lonnell, N., Lüth, M,, Martins, A., Maslovsky, O., Papp, B., Porley, R., Rothero, G., Söderström, L., Ştefǎnuţ, S., Syrjänen, K., Untereiner, A., Váňa, J., Vanderpoorten, A., Vellak, K., Aleffi, M., Bates, J., Bell, N., Brugués, M., Cronberg, N., Denyer, J., Duckett, J., During, H., Enroth, J., Fedosov, V., Flatberg, K.I., Ganeva, A., Gorski, P., Gunnarsson, U., Hassel, K., Hespanhol, H., Hill, M., Hodd, R., Hylander, K., Ingerpuu, N., Laaka-Lindberg, S., Lara, F., Mazimpaka, V., Mezaka, A., Müller, F., Orgaz, J.D., Patiño, J., Pilkington, S., Puche, F., Ros, R.M., Rumsey, F., Segarra-Moragues, J., Seneca, A., Stebel, A., Virtanen, R., Weibull, H., Wilbraham, J. & Zarnowiec, J. (2019) A miniature world in decline. European Red List of Mosses, B. Liverworts and Hornworts. IUCN. Available from: https://portals.iucn.org/library/sites/library/files/documents/RL-4-027-En.pdf (accessed 17 December 2024)
  35. Hughes, A.R. & Tilman, D. (2004) Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proceedings of the National Academy of Sciences 101: 8998–9002. https://doi.org/10.1073/pnas.0402642101
  36. Hull, J. (1808) The British Flora, or a Linnaean Arrangement of British Plants. 2nd ed, vol. 1. Manchester & London.
  37. Juratzka, J. (1866) Bryologisches. Botanische Zeitung (Berlin) 24 (23): 177–179.
  38. Jump, A.S., Marchant, R. & Peñuelas, J. (2009) Environmental change and the option value of genetic diversity. Trends in Plant Science 14 (1): 51–58. https://doi.org/10.1016/j.tplants.2008.10.002
  39. Kahilainen, A., Puurtinen, M. & Kotiaho, J.S. (2014) Conservation implications of species–genetic diversity correlations. Global Ecology and Conservation 2: 315–323. https://doi.org/10.1016/j.gecco.2014.10.013
  40. Knoblauch, E. (1934) Neue und seltene Oleaceen aus dem tropischen Afrika, Neu-Guinea, China und Indo-China. Notizblatt des Botanischen Gartens und Museums zu Berlin-Dahlem 11: 1027−1031. https://doi.org/10.2307/3994607
  41. Librado, P. & Rozas, J. (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451−1452. https://doi.org/10.1093/bioinformatics/btp187
  42. Leigh, J.W. & Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6 (9): 1110–1116.
  43. Linnaeus, C. (1753) Species Plantarum, vol. 1. Laurentii Salvii, Holmiae, 560 pp.
  44. Linnaeus, C. (1782) Supplementum Plantarum Systematis Vegetabilium Editionis decimae tertiae, Generum Plantarum Editiones sextae, et Specierum Plantarum Editionis secundae. Editum a Carolo a Linné. Orphanotrophei, Brunsvigae, 468 pp.
  45. Martins, S., Sim-Sim, M. & Stech, M. (2021) The Macaronesian endemic moss Andoa berthelotiana (Myuriaceae, Bryophyta): Phylogenetic relationships and cryptic speciation. Nova Hedwigia 112 (3−4): 335−357. https://doi.org/10.1127/nova_hedwigia/2021/0629
  46. Mimura, M., Yahara, T., Faith, D.P., Vázquez‐Domínguez, E., Colautti, R.I., Araki, H., Javadi, F.,Núñez-Farfán, J., Mori, A.S., Zhou, S., Hollingsworth, P.M., Neaves, L.E., Fukano, Y., Smith, G.F., Sato, Y.-I., Tachida, H. & Hendry, A.P. (2017) Understanding and monitoring the consequences of human impacts on intraspecific variation. Evolutionary applications 10 (2): 121−139. https://doi.org/10.1111/eva.12436
  47. Mitchell, N., Stretch, R., Tempera, F. & Ligi, M. (2018) Volcanoes in the Azores: A Marine Geophysical Perspective. In: Kueppers, U. & Beier, C. (Eds.) Volcanos of the Azores. Revealing the Geological Secrets of the Central Northern Atlantic Islands. Springer, Berlin, Germany, pp. 101−126.
  48. Mitten, W. (1865) Contribution to the Cryptogamic flora of the Atlantic Islands. Journal of the Linean Botanical Society 8: 1−10.
  49. Montagne, C. (1840) Hypnum berthelotianum. In: Webb, M.B. & Berthelot, S. (Eds.) Histoire Naturelle des Iles Canaries, vol. 3 (2.4). pp. 4−6.
  50. Ochyra, R. (1982) New names for genera of mosses. Journal of Bryology 12: 31−32.
  51. Monteiro, R., Furtado, S., Rocha, M., Freitas, M., Medeiros, R. & Cruz, J.V. (2008) O ordenamento do território nos Açores. Política e instrumentos. Ed. SRAM, Ponta Delgada, Azores, Portugal, 159 pp.
  52. Müller, K., Müller, J., Neinhuis, C. & Quandt, D. (2006) PhyDE: Phylogenetic Data Editor, v0.995. Program distributed by the authors. Available from: http://www.phyde.de (accessed 17 December 2024)
  53. Pacheco, J.M., Ferreira, T., Queiroz, G., Wallenstein, N., Coutinho, R., Cruz, J.V., Pimentel, A., Silva, R., Gaspar, J.L. & Goulart, C. (2013) Notas sobre a geologia do arquipélago dos Açores. In: Dias, R., Araújo, A., Terrinha, P. & Kullberg, J.C. (Eds.) Geologia de Portugal, vol. 2. Escolar Editora, pp. 595−690.
  54. Patiño, J., Werner, O. & González-Mancebo, J.M. (2010) The impact of forest disturbance on the genetic diversity and population structure of a late-successional moss. Journal of Bryology 32: 220–231. https://doi.org/10.1179/037366810X12735734836133
  55. Peakall, R. & Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537−2539. https://doi.org/10.1093/bioinformatics/bts460
  56. Poir, J.L.M. (1813) Encyclopédie Méthodique. Botanique, Supplément, vol. 3. H. Agasse, Paris, 780 pp.
  57. Rivas-Martinez, S., Penas, A., Diaz-González, T.E., Río, S.D., Cantó, P., Herrero, L., Pinto Gomes, C. & Costa, J.C. (2014) Biogeography of Spain and Portugal. Preliminary typological synopsis. International Journal of Geobotanical Research 4: 1−64.
  58. Rull, V., Lara, A., Rubio-Inglés, M.J., Giralt, S., Gonçalves, V., Raposeiro, P., Hernández, A., Sánchez-López, G., Vásquez-Loureiro, D., Bao, R., Masqué, P. & Sáez, A. (2017) Vegetation and landscape dynamics under natural and anthropogenic forcing on the Azores islands: A 700-year pollen record from the São Miguel Island. Quaternary Science Reviews 159: 155−168. https://doi.org/10.1016/j.quascirev.2017.01.021
  59. Schimper, W.P. (1851−1853) Bryologia Europaea, seu genera muscorum Europaeorum monographice illustrata vol. 5. Schweizerbart, Stuttgart.
  60. Seubert, M. (1844) Flora Azorica. Adolphus Marcus, Bonnae, 50 pp. + 15 pls.
  61. Sim-Sim, M., Lopes, T., Ruas, S. & Stech, M. (2015) Does altitude shape molecular diversity and richness of bryophytes in Madeira’s natural forest? Plant Ecology and Evolution 148: 171−180.
  62. Silva, R., Carmo, R. & Marques, R. (2021) Characterization of the tectonic origins of historical and modern seismic events and their societal impact on the Azores Archipelago, Portugal. In: Dilek, Y., Ogawa, Y. & Okubo, Y. (Eds.) Characterization of Modern and Historical Seismic–Tsunamic Events, and Their Global–Societal Impacts. The Geological Society of London, London, pp. 245−267.
  63. Spagnuolo, V., Terracciano, S. & Giordano, S. (2009) Intra-Specific Genetic Variation in Mosses: A Novel Approach to Detect Environmental Changes. In: Mahoney, C.L. & Springer, D.A. (Eds.) Genetic Diversity. Nova Science Publishers, New York, U.S.A., pp. 271−283.
  64. Stech, M., Sim-Sim, M., Esquível, M.G., Fontinha, S., Tangney, R., Lobo, C., Gabriel, R. & Quandt, D. (2008) Explaining the ‘anomalous’ distribution of Echinodium (Bryopsida: Echinodiaceae): independent evolution in Macaronesia and Australasia. Organisms Diversity & Evolution 8 (4): 282–292. https://doi.org/10.1016/j.ode.2008.02.001
  65. Triantis, K.A., Borges, P.A.V., Ladle, R.J., Hortal, J., Cardoso, P., Gaspar, C., Dinis, F., Mendonca, E., Silveira, L.M.A., Gabriel, R., Melo, C., Santos, A.M.C., Amorim, I.R., Ribeiro, S.P., Serrano, A.R.M., Quartau, J.A. & Whittaker, R.J. (2010) Extinction debt on oceanic islands. Ecography 33 (2): 285−294. https://doi.org/10.1111/j.1600-0587.2010.06203.x
  66. Tutin, T.G. (1933) Notes from the University Herbarium, Cambridge. On Ilex perado Ait. and Notelaea excelsa. Journal of Botany, British and Foreign 71: 99−101.
  67. Tutin, T.G. (1953) The vegetation of the Azores. Journal of Ecology 41: 53–61.
  68. Vanderpoorten, A., Laenen, B., Gabriel, R., González-Mancebo, J.M., Rumsey, F. & Carine, M.A. (2011) Dispersal, diversity and evolution of the Macaronesian cryptogamic floras. In: Bramwell, D. & Caujapé-Castells, J. (Eds.) The Biology of Island Floras. Cambridge University Press, Cambridge, UK, pp. 338−364.
  69. Ventenat, E.P. (1802) Description des plantes nouvelles et peu connues, cultivées dans le jardin de J. M. Cels. Crapelet, Paris, 100 pp.
  70. Yaacov, D.B., Arbel-Thau, K., Zilka, Y., Ovadia, O., Bouskila, A. & Mishmar, D. (2012) Mitochondrial DNA Variation, but Not Nuclear DNA, Sharply Divides Morphologically Identical Chameleons along an Ancient Geographic Barrier. PLoS ONE 7 (3): e31372. https://doi.org/10.1371/journal.pone.0031372
  71. Yamasaki, M. & Ideta, O. (2013) Population structure in Japanese rice population. Breeding Science 63 (1): 49−57. https://doi.org/10.1270/jsbbs.63.49
  72. Zar, J.H. (2010) Biostatistical analysis. Pearson Prentice-Hall, Upper Saddle River, NJ, 944 pp.