Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-12-06
Page range: 139-146
Abstract views: 133
PDF downloaded: 13

The fundamental karyotype and plastid DNA of Alstroemeria piperata (Liliales, Alstroemeriaceae), a species endemic to the Valparaíso Region, Chile

Facultad de Ciencias Naturales y Oceanográficas; Departamento de Botánica; Universidad de Concepción; Concepción; Chile
Museo Nacional de Historia Natural y Museo de la Educación Gabriela Mistral; Casilla 787; Santiago; Chile
Facultad de Ciencias Naturales y Oceanográficas; Departamento de Botánica; Universidad de Concepción; Concepción; Chile
Facultad de Ciencias Naturales y Oceanográficas; Departamento de Botánica; Universidad de Concepción; Concepción; Chile
Karyotype Chloroplast Haplotype Alstroemeria piperata endemic Chile Monocots

Abstract

A recently described species of Chilean Alstroemeria, A. piperata, is endemic to the Mediterranean region and characterized by having storage roots covered with whitish hairs. It is a highly endangered species, consisting only of a single population with few individuals. Its chromosomes are 2n = 16, typical for the genus, but they possess unique secondary constrictions. A molecular analysis of plastid DNA revealed no single nucleotide polymorphisms, which suggests that processes of phenotypic stabilization and incipient genetic isolation may be occurring within the species.

 

References

  1. Baeza, C., Rojas, G. & Ruiz, E. (2011) El cariotipo fundamental de Alstroemeria patagonica Phil. (Alstroemeriaceae). Boletín de la Sociedad Argentina de Botánica 2011: 313–315. https://doi.org/10.4067/S0717-66432011000200019
  2. Baeza, C., Toro, O., Ruiz, E., Finot, L., Carrasco, P. & Villalobos, N. (2018a) Polimorfismo de tamaño entre cromosomas homólogos, un caso extremo en Alstroemeria pulchra Sims. (Alstoemeriacaeae), especie endémica de Chile. Gayana Botánica 75: 663–666. https://doi.org/10.4067/S0717-66432018000200663
  3. Baeza, M., Finot, V., Ruiz, E., Carrasco, P., Novoa, P., Rosas, M. & Toro-Núñez, O. (2018b) Cytotaxonomic study of the Chilean endemic complex Alstroemeria magnifica Herb. (Alstroemeriaceae). Genetics and Molecular Biology 41: 434–441. https://doi.org/10.1590/1678-4685-gmb-2017-0157
  4. Baeza, C., Toro, O., Ruiz, E., Santos, D., Salvatierra, A. & Thielemann, E. (2022) Divergence among the subspecies of Alstroemeria garaventae Ehr. Bayer (Alstroemeriaceae) on fundamental karyotype and chloroplast DNA data. Gayana Botánica 79: 140–146. https://doi.org/10.4067/S0717-66432022000200140
  5. Bayer, E. (1987) Die Gattum Alstroemeria in Chile. Mitteilungen der Botanischen Staatssaammlung München 24: 1–362.
  6. Borchsenius, F. (2009) FastGap 1.2 (1.2). Available from: http://www.aubot.dk/FastGap_home.htm (accessed 5 December 2023).
  7. Clement, M., Snell, Q., Walke, P., Posada, D. & Crandall, K. (2002) TCS: Estimating gene genealogies. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium. 7 pp. https://doi.org/10.1109/IPDPS.2002.1016585
  8. Duminil, J. & Di Michele, M. (2009) Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosystems 143: 528–542. https://doi.org/10.1080/11263500902722964
  9. Finot, V., Baeza, C., Muñoz-Schick, M., Ruiz, E., Espejo, J., Alarcón, D., Carrasco, P., Novoa, P. & Eyzaguirre, M. (2018) Guía de campo de las alstroemerias Chilenas. Corporación Chilena de la Madera, Concepción, 295 pp.
  10. Graham, R. (1833) Description of several new or rare plants which have lately flowered in the neighborhood of Edinburgh, and chiefly in the Royal Botanic Garden. Edinburgh New Philosophical Journal 15: 181–184.
  11. Herbert, W. (1837) Amaryllidaceae. Ridgway, London, 428 pp.
  12. Herbert, W. (1843) Miscellaneous matters of the Botanical Register. Edward’s Botanical Register 29: 1–85.
  13. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
  14. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: mprovements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
  15. Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695–1701. https://doi.org/10.1093/molbev/mss020
  16. Levan, A., Fredga, K. & Sandber, A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  17. Leigh, J.W. & Bryant, D. (2015) POPART: full‐feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. https://doi.org/10.1111/2041-210X.12410
  18. Linnaeus, C. (1762) Planta alströmeria. Amoenitates Academicae 6: 247–262.
  19. Loddiges, C. (1827) Coloured delineations of plants from all countries. The Botanical Cabinet 13: t1271–t1280.
  20. Molina, G.I. (1872) Saggio sulla storia naturale del Chili. Aquino, Bologna, 368 pp.
  21. Muñoz-Schick, M. (2003) Notas nomenclaturales sobre Alstroemeria (Alstreoemeriaceae). Noticiario Mensual del Museo Nacional de Historia Natural 352: 22–24.
  22. Muñoz-Schick, M., Eyzaguirre, M.T. & Moreira-Muñoz, A. (2019) Rediscovery of a species and its new classification as a subspecies of Alstroemeria garaventae (Alstroemeriaceae) de Chile. Gayana Botanica 76 (2): 247–252. https://doi.org/10.4067/S0717-66432019000200247
  23. Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300
  24. Okonechnikov, K., Golosova, O. & Fursov, M. (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
  25. Peruzzi, L. & Eroglu, H. (2013) Karyotype asymmetry: again, how to measure and what to measure? Comparative Cytogenetics 7: 1–9. https://doi.org/10.3897/compcytogen.v7i1.4431
  26. Philippi, R.A. (1896) Plantas nuevas Chilenas. Anales de la Universidad de Chile 93: 143–166.
  27. Philippi, R.A. (1858) Plantarum novarium Chilensium. Linnaea 29: 1–110.
  28. Rieseberg, L.H. & Willis, J.H. (2007) Plant speciation. Science 317: 910–914. https://doi.org/10.1126/science.1137729
  29. Ruiz, H. & Pavón, J. (1802) Flora Peruviana et Chilensis 3: 1–95.
  30. Sanso, A. (2002) Chromosome studies in Andean taxa of Alstroemeria (Alstroemeriaceae). Botanical Journal of the Linnaean Society 138: 451–459. https://doi.org/10.1046/j.1095-8339.2002.00019.x
  31. Sanso, A. & Hunziker, J. (1998) Karyological studies in Alstroemeria and Bomarea (Alstroemeriaceae). Hereditas 129: 67–74. https://doi.org/10.1111/j.1601-5223.1998.t01-1-00067.x
  32. Schlick-Steiner, B.C., Arthofer, W. & Steiner, F.M. (2014) Take up the challenge: opportunities for evolution research from resolving conflict in integrative taxonomy. Molecular Ecology 23: 4192–4194. https://doi.org/10.1111/mec.12868
  33. Seigler, D. & Ebinger, J. (2005) New combinations in the genus Vachellia (Fabaceae: Mimosoideae) from the New World. Phytologia 87: 139–178.
  34. Simmons, M.P. & Ochoterena, H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369–381. https://doi.org/10.1093/sysbio/49.2.369
  35. Sims, J. (1823) Flower-garden displayed. Botanical Magazine 50: 2356–2440.
  36. Watson, J., Flores, A. & Rojas, G. (2018) A rare, narrowly endemic new species of Alstroemeria (Alstroemeriaceae) from the transversal Andean foothills of Central Chile, and its interesting ecology. International Rock Gardener 102: 25–54.