Abstract
A plant named Nanocnide pilosa (Urticaceae) is assessed as a critically endangered species in Japan. However, this name has been placed in synonymy with N. lobata in the Flora of China, and this treatment is widely accepted outside of Japan. Although plants known as N. pilosa and N. lobata have been known to have morphological differences, their phylogenetic relationships have never been investigated using multiple samples per taxon. To elucidate the phylogeny and taxonomic status of N. pilosa and N. lobata, we conducted phylogenetic and population genetic analyses of the genus Nanocnide using internal transcribed spacer regions and MIG-seq together with morphological observations. Our results suggest that N. pilosa and N. lobata are sister taxa, and that each of them comprises a distinct clade in the MIG-seq tree. Based on these results, we propose treating N. pilosa and N. lobata as distinct species. Our study also revealed that N. pilosa has a widespread distribution in the subtropical regions of Mainland China and southern part of the Kyushu Island, Japan; whilst N. lobata is endemic to the Ryukyu Islands, Japan. In addition, we report new information on morphology of the remaining species of Nanocnide.
References
- Blume, C.L.R. von (1856) Museum Botanicum Lugduno-Batavum, sive, stirpium exoticarum novarum vel minus cognitarum ex vivis aut siccis brevis ex positio, 2. E. J. Brill, Lugdunum-Batavorum, 154 pp. https://doi.org/10.5962/bhl.title.274
- Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina Sequence Data, Bioinformatics 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
- Borchsenius, F. (2009) FastGap homepage, FastGap 1.2. Department of Biosciences, Aarhus University, Denmark. Available from: http://www.aubot.dk/FastGap_home.htm (accessed: 12 July 2019).
- Bruijn, A.J. de (1853) POLYGONEAE Juss. In. Miquel, F.A.G. (Ed.) Plantae junghuhnianae :enumeratio plantarum, quas, in insulis Java et Sumatra, Sythoff, A.W./Baillière, J.B., Logdunum Batavorum/Paris. pp. 302–311. https://doi.org/10.5962/bhl.title.388
- Chen, J. & Monro, A.K. (2003) Urticaceae. 6. Pilea. In: Wu., Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 5. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 92–120.
- Chen, J., Friis, I. & Wilmot-Dear, C.M. (2003a) Urticaceae. 2. Nanocnide. In: Wu, Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 5. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 84–85
- Chen, J., Friis, I. & Wilmot-Dear, C.M. (2003b) Urticaceae. 3. Laportea. In: Wu, Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 5. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 85–89.
- de Candolle, A.P. (1869) Prodromus Systematis Naturalis Regni Vegetabilis 16. C. Lahure, Paris, 163 pp. https://doi.org/10.5962/bhl.title.286
- Earl, D.A. & vonHoldt, B.M. (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources 4: 359–361. https://doi.org/10.1007/s12686-011-9548-7
- Eaton, D.A.R. & Overcast, I. (2020) ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 36: 2592–2594. https://doi.org/10.1093/bioinformatics/btz966
- Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14 (8): 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
- Forsskål, P. (1775) Flora Aegyptiaco-Arabica. sive, descriptions plantarum, quas per Aegyptum inferiorem et Arabiam felicem. Officina Mölleri, Haunia [Copemhagen]. 162 pp. https://doi.org/10.5962/bhl.title.41
- Friis, I. (1981) A synopsis of Girardinia (Urticaceae). Kew Bulletin 36: 143–157. https://doi.org/10.2307/4119014
- Grosse-Veldmann, B., Nürk, N.M., Smissen, R., Breitwieser, I., Quandt, D. & Weigend, M. (2016) Pulling the sting out of nettle systematics—A comprehensive phylogeny of the genus Urtica L. (Urticaceae). Molecular Phylogenetics and Evolution 102: 9–19. https://doi.org/10.1016/j.ympev.2016.05.019
- Handel-Mazzetti, H. (1929) Anthophyta. Symbolae Sinicae 7: 1–730. https://doi.org/10.5962/bhl.title.878
- Henning, T., Quandt, D., Grosse-Veldmann, B., Monro, A. & Weigend, M. (2014) Weeding the nettles II: A delimitation of “Urtica dioica L.” (Urticaceae) based on morphological and molecular data, including a rehabilitation of Urtica gracilis Ait. Phytotaxa 162: 61–83. https://doi.org/10.11646/phytotaxa.162.2.1
- Hornemann, J.W. (1815) Hortus Regius Botanicus Hafniensis, vol. 2. E. A. H. Mölleri, Hafniae [Copenhagen].
- Huang, H. & Knowles, L.L. (2016) Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Systematic Biology 65: 357–365. https://doi.org/10.1093/sysbio/syu046
- Iino, S. (2007) Katei de tsukureru kinoko no furi-zudorai. Chiba Mycological Club Bulletin 22: 10–13. [in Japanese]
- Jakobsson, M. & Rosenberg, N.A. (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. https://doi.org/10.1093/bioinformatics/btm233
- Jin, X.-F., Zhang, J., Lu, Y.-F., Yang, W.-W. & Chen, W.-J. (2019) Nanocnide zhejiangensis sp. nov. (Urticaceae: Urticeae) from Zhejiang Province, East China. Nordic Journal of Botany 37: e02339. https://doi.org/10.1111/njb.02339
- Katoh, K., Rozewicki, J. & Yamada, D.K. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatic 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
- Kim, C., Deng, T., Chase, M., Zhang, D.-G., Nie, Z.-L. & Sun, H. (2015) Generic phylogeny and character evolution in Urticeae (Urticaceae) inferred from nuclear and plastid DNA regions. Taxon 64: 65–78. https://doi.org/10.12705/641.20
- Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/BF01731581
- Kitaguchi, M. (1937) On the Vegetation of Wei-hu-ling, Prov. Chi-lin, Manchuria. Report of the Institute of Scientific Research Manchoukuo 1: 255–324.
- Lamarck, J.B.A.P.M. & de Candolle, A.P. (1806) Synopsis Plantarum in Flora Gallica Descriptarum. H. Agasse, Parisiis, 184 pp.
- Léveillé, A.A.H. (1904) Contribution jubilaire a la flore du Kouy-Tchéou. Bulletin de la Société Botanique de France 51: CXLIII–CXLVI.
- Linnaeus, C.V. (1753) Species Plantarum, vol. 2. Laurentii Salvii, Holmiae, 794, 984 pp. https://doi.org/10.5962/bhl.title.669
- Maximowicz, C.J. (1876) Diagnoses plantarum Novarum Japoniae et Mandhuriae. Mélanges biologiques tirés du Bulletin de l’Académie Impériale des sciences de St. Petersburg 9: 581–660. https://doi.org/10.5962/bhl.title.46306
- Migo, H. (1934) Duae novae plantae Chinenses. Transactions of the Natural History Society of Formosa 24: 386–388.
- Ministry of the Environment, Japan. (2020) Red list 2020 by Ministry of the Environment. Available from: https://warp.da.ndl.go.jp/info:ndljp/pid/11534635/www.env.go.jp/press/files/jp/113667.pdf (accessed 27 Sep. 2022). [in Japanese]
- Moe, A.M. & Weiblen, G.D. (2012) Pollinator-mediated reproductive isolation among dioecious fig species (Ficus, Moraceae). Evolution 66: 3710–3721. https://doi.org/10.1111/j.1558-5646.2012.01727.x
- National Forestry and Grassland Administration. (2021) Guojiazhongdianbaohuyeshengzhiwuminglu (in Chinese). Available from: http://www.gov.cn/zhengce/zhengceku/2021-09/09/content_5636409.htm (accessed 24 Feb. 2022).
- National Museum of Nature and Science, Japan. (2022) Available from: https://www.kahaku.go.jp/english/research/db/botany/redlist/list/list_04_209_1.html (accessed 27 Sep. 2022).
- Pei, C. (1934) The vascular plants of Nanking IV. Contributions from the Biological Laboratory of the Science Society of China. Botanical Series. 9: 141–188.
- Pedersoli, G.D., Leme, F.M., Leite, V.G. & Teixeira, S.P. (2019) Anatomy solves the puzzle of explosive pollen release in wind-pollinated urticalean rosids. American Journal of Botany 106 (3): 489–506. https://doi.org/10.1002/ajb2.1254
- Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. https://doi.org/10.1093/genetics/155.2.945
- Pritchard, J.K., Wen, X. & Falush, D. (2009) Documentation for structure software: Version 2.3. Available from: https://www.ccg.unam.mx/~vinuesa/tlem09/docs/structure_doc.pdf (accessed 11 May 2022)
- Qiu, H. & Gilbert, M.G. (2008) Euphorbiaceae. 40. Acalypha. In: Wu, Z.-Y., Peter, H.R. & Hong, D.-Y. (Eds.) Flora of China, vol. 11. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. pp. 251–255.
- Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
- Rochette, N.C., Rivera-Colón, A.G. & Catchen, J.M. (2019) Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology 28: 4737–4754. https://doi.org/10.1111/mec.15253
- Sagun, V.G., Levin, G.A. & van Welzen, P.C. (2010) Revision and phylogeny of Acalypha (Euphorbiaceae) in Malesia. Blumea 55: 21–60. https://doi.org/10.3767/000651910X499141
- Simmons, M.P. & Ochoterena, H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49: 369–381. https://doi.org/10.1093/sysbio/49.2.369
- Staflue, F.A. & Cowan, R.S. (1988) Taxonomic literature: a selective guide to botanical publications and collections with dates, commentaries and types. Bohn, Scheltema & Holkema, Utrecht, Netherland, 653 pp. https://doi.org/10.5962/bhl.title.48631
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
- Suyama, Y., Hirota, S.K., Matsuo, A., Tsunamoto, Y., Mitsuyuki, C., Shimura, A. & Okano, K. (2022) Complementary combination of multiplex high-throughput DNA sequencing for molecular phylogeny. Ecological Research 37: 171–181. https://doi.org/10.1111/1440-1703.12270
- Suyama, Y. & Matsuki, Y. (2015) MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Scientific Reports 5: 16963. https://doi.org/10.1038/srep16963
- Swarbrick, J.T. (1971) External mucilage production by the seeds of British plants. Botanical Journal of the Linnean Society 64: 157–162. https://doi.org/10.1111/j.1095-8339.1971.tb02142.x
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197
- Tanabe, A.S. (2011) Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional, and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources 11: 914–921. https://doi.org/10.1111/j.1755-0998.2011.03021.x
- Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17: 57–86.
- Tateishi, Y. (2006a) 5. Laportea Gaudich. In: Iwatsuki, K., Boufford, D.E. & Ohba, H. (Eds.) Flora of Japan IIa. Kodansha, Tokyo, pp. 81–82.
- Tateishi, Y. (2006b) 5. Nanocnide Blume. In: Iwatsuki, K., Boufford, D.E. & Ohba, H. (Eds.) Flora of Japan IIa. Kodansha, Tokyo, pp. 89–90.
- The Plant List. (2013) The Plant List Version 1.1. Available from: http://www.theplantlist.org/ (accessed on 23 April 2020)
- Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. & Smith, G.F. (eds.) (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. https://doi.org/10.12705/Code.2018
- Weddell, H.A. (1869) Ordo CLXXXV. Urticaceae (1). In: de Candolle, A.P. (Ed.) Prodromus 16 sectio prior. Lahure C., Paris. pp. 32–235. https://doi.org/10.5962/bhl.title.286
- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: A guide to method and applications. Academic Press, Sand Diego Calif. pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wu, Z.-Y., Monro, A.K., Milne, R.I., Wang, H., Yi, T.-S., Liu, J.& Li, D.-Z. (2013) Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Molecular Phylogenetics and Evolution 69: 814–827. https://doi.org/10.1016/j.ympev.2013.06.022
- Xi, Z.-X., Liu, L. & Davis, C.C. (2016) The impact of missing data on species tree estimation. Molecular Biology and Evolution 33: 838–860. https://doi.org/10.1093/molbev/msv266
- Yang, X.-J., Baskin, J.M., Baskin, C.C. & Huang, Z.-Y. (2012) More than just a coating: Ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspectives in Plant Ecology, Evolution and Systematics 14: 434–442. https://doi.org/10.1016/j.ppees.2012.09.002
- Yang, Y.-P., Shih, B.-L. & Liu, H.-Y. (1996) 8. Urticaceae. In: Boufford, D.E., Hsieh, C.-F., Huang, T.-C., Ohashi, H., Yang, Y.-P., Lu, S.-Y. & Yang, S.-Y. (Eds.) Flora of Taiwan second edition 2. National Taiwan University, Taipei, pp. 197–257.