Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-07-11
Page range: 285–300
Abstract views: 136
PDF downloaded: 14

Climatic conditions may structure the distribution of Syzygiella rubricaulis (Nees) Steph., a disjunct and high elevation species

Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, Brazil
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, Brazil
Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, 22460-030, Rio de Janeiro, RJ, Brazil
Bryophyte Climate conditions Tropical Mountains

Abstract

Syzygiella rubricaulis is a widely distributed species in the high mountains of tropical America and in addition occurs on the Azores. In order to unravel the climatic environment of S. rubricaulis populations, we compiled georeferenced data from verified herbarium specimens, GBIF (Global Biodiversity Information Facility – www.gbif.org) and species Link (www.splink.org.br) databases, as well as climatic data from Worldclim, to determine the climatic signals structuring the populations. We analyzed the disjunct range of Syzygiella rubricaulis from a climatic perspective. We used cluster analysis and principal components analysis (PCA) with climatic variables to clarify how climate may be structuring populations and which variables make the largest contributions to dataset variations. We recovered three major strongly supported groups of S. rubricaulis. Water vapour pressure, minimum temperature of the coldest month, annual precipitation, and precipitation of the wettest month explained variation patterns in the dataset best. We also provide a detailed dataset characterization of all records compiled in the present study. Our findings provide new insight into how climate structures the distribution of S. rubricaulis populations. Precipitation variables play an important role in determining the observed distribution patterns of the species and are suggestive of future alteration of its geographic distribution in response to climate change.

References

  1. Burneo, M. & Benítez, A. (2020) Distribución potencial y áreas prioritarias para la conservación de briófitos en Ecuador. Bosques Latitude Cero 10: 1–13.

  2. Costa, D.P. (1999) Epiphytic bryophyte diversity in primary and secondary lowland rainforest in southeastern Brazil. The Bryologist 102: 320–326. https://doi.org/10.2307/3244372

  3. Costa, D.P., Nadal, F. & Rocha, T.C. (2020) The first botanical explorations of bryophyte diversity in the Brazilian Amazon mountains: high species diversity, low endemism, and low similarity. Biodiversity and Conservation 29: 2663–2688. https://doi.org/10.1007/s10531-020-01993-9

  4. Delgadillo, C.M. (1992) Moss Interchange: Bryofloristic Similarities between Mexico and Colombia and the Phytogeographical Role of the Central American Bridge. The Bryologist 95: 261–265. https://doi.org/10.2307/3243481

  5. Devos, N. & Vanderpoorten, A. (2009) Range disjunctions, speciation, and morphological transformation rates in the liverwort genus Leptoscyphus. Evolution 63: 779–792. https://doi.org/10.1111/j.1558-5646.2008.00567.x

  6. Egbert, S.L., Peterson, A.T., Sanchez-Cordeiro, V. & Price, K.P. (1998) Modelling conservation priorities in Veracruz, Mexico. In: Morain, S. (Ed.) GIS in natural resource management: Balancing the technical-political equation. High Mountain Press, Santa Fe, New Mexico, pp. 141–150.

  7. Evans, S.A., Halpern, C.B. & McKenzie, D. (2012) The contributions of forest structure and substrate to bryophyte diversity and abundance in mature coniferous forests of the Pacific Northwest. The Bryologist 115: 278–94. https://doi.org/10.1639/0007-2745-115.2.278

  8. Fahrig, L. (2003) Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics 34: 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419

  9. Feldberg, K., Vana, J., Long, D.G., Shaw, A.J., Hentschel, J. & Heinrichs, J. (2010) A phylogeny of Adelanthaceae (Jungermanniales, Marchantiophyta) based on nuclear and chloroplast DNA markers, with comments on classification, cryptic speciation and biogeography. Molecular Phylogenetics and Evolution 55: 293–304. https://doi.org/10.1016/j.ympev.2009.11.009

  10. Ferreira, M.T., Cardoso, P., Borges, P.A.V., Gabriel, R., Azevedo, E.B., Reis, F., Araújo, M.B. and Elias, R.B. (2016) Effects of climate change on the distribution of indigenous species in oceanic islands (Azores). Climate Change 138 (3–4): 603–615. https://doi.org/10.1007/s10584-016-1754-6

  11. Fick, S.E. & Hijmans, R.J. (2017) Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 12: 4302–4315. https://doi.org/10.1002/joc.5086

  12. Fram, J.-P. & Vitt, D.H. (1993) Comparisions between the moss floras of North America and Europe. Nova Hedwigia 56: 307–333.

  13. Gabriel, R. & Bates, J.W. (2005) Bryophyte community composition and habitat specificity in the natural forests of Terceira, Azores. Plant Ecology 177: 125–44. https://doi.org/10.1007/s11258-005-2243-6

  14. Gabriel, R. & Sim-Sim, M. (2019) Syzygiella rubricaulis (Europe assessment). The IUCN Red List of Threatened Species 2019: e.T87469883A87714076. [Accessed on 28 May 2023]

  15. Gabriel, R., Homen, N., Couto, A., Aranda, S.C. & Borges, P.A.V. (2011) Azorean bryophytes: a preliminary review of rarity patterns. Açoreana, Supl. 7: 149–206.

  16. Gignac, L. (2001) Bryophytes as indicators of climate change. The Bryologist 104: 410–20. https://doi.org/10.1639/0007-2745(2001)104[0410:BAIOCC]2.0.CO;2

  17. Gradstein, S.R. (2008) Epiphytes of tropical montane forests—impact of deforestation and climate change. In: Gradstein, S.R., Homeier, J. & Gansert, D. (Eds.) The tropical mountain forest. University Press, Göttingen. https://doi.org/10.17875/gup2008-702

  18. Gradstein, S.R. (2013) Afro-American hepatics revisited. Polish Botanical Journal 58: 149–177. https://doi.org/10.2478/pbj-2013-0016

  19. Gradstein, S.R. (2016) Amphitropical disjunctive species in the complex thalloid liverworts (Marchantiidae). Journal of Bryology 39: 66–78. https://doi.org/10.1080/03736687.2016.1189662

  20. Gradstein, S.R. & Costa, D.P. (2016) A new species of Syzygiella (subg. Cryptochila) from Brazil. Nova Hedwigia 103: 13–16. https://doi.org/10.1127/nova_hedwigia/2016/0335

  21. Gradstein, S.R., Churchill, S.P. & Salazar-Allen, N. (2001) Guide to the bryophytes of tropical America. Memoirs of New York Botanical Garden 86: 1–577.

  22. Gradstein, S.R., Pócs, T. & Vâña, J. (1983) Disjunct hepaticae in tropical America and Africa Acta Botanica Hungarica 29: 127–171.

  23. Grolle, R. (1971) Jamesoniella und Verwandte. Feddes Repertorium 82: 1–96. https://doi.org/10.1002/fedr.19710820102

  24. Heinrichs, J., Lindner, M., Gradstein, S.R., Groth, H., Buchbender, V., Solga, A. & Fischer, E. (2005) Origin and subdivision of Plagiochila (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon 54: 317–333. https://doi.org/10.2307/25065360

  25. Heinrichs, J., Klugmann, F.A., Hentschel, J. & Schneider, H. (2009) DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, Marchesinia brachiata (Lejeuneaceae, Porellales). Molecular Phylogenetics and Evolution 53: 113–121. https://doi.org/10.1016/j.ympev.2009.05.032

  26. Henriques, D.S.G., Borges, P.A.V., Ah-Peng, C. & Gabriel, R. (2016) Mosses and liverworts show contrasting elevational distribution patterns in an oceanic island (Terceira, Azores): the influence of climate and space. Journal of Bryology 38: 183–194. https://doi.org/10.1080/03736687.2016.1156360

  27. Kassambara, A. & Mundt, F. (2016) Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.3

  28. Laurence, W.F. (1999) Reflections on the tropical deforestation crisis. Biological Conservation 91: 109–117. https://doi.org/10.1016/S0006-3207(99)00088-9

  29. Maciel-Silva, A.S., Gaspar, E., Conceição, F.P., Santos, N.D. & Costa, D.P. (2016) Reproductive biology of Syzygiella rubricaulis (Nees) Steph. (Adelanthaceae, Marchantiophyta), a liverwort disjunctly distributed in high-altitude Neotropical mountains. Plant Biology 18: 601–608. https://doi.org/10.1111/plb.12446

  30. Patiño, J., Mateo, R.G., Zanatta, F., Marquet, A., Aranda, S.C., Borges, P.A.V., Dirkse, G., Gabriel, R., Gonzalez-Mancebo, M., Guisan, A., Muñoz, J., Sim-Sim, M. & Vanderpoorten, A. (2016) Climate threat on the Macaronesian endemic bryophyte flora. Scientific Reports 6: 1–12. https://doi.org/10.1038/srep29156

  31. Pócs, T. (1976) Correlations between the tropical African and Asian bryofloras, I. Journal Hattori Botancial Laboratory 41: 95–106.

  32. Pócs, T. (1992) Correlation between the tropical African and Asian bryofloras. II. Bryobrothera 1: 35–47.

  33. Porley, R. & Hodgetts, N.G. (2005) Mosses and liverworts. London: Collins, New Naturalist.

  34. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [https://www.R-project.org/]

  35. Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J. & Hirota, M.M. (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142: 1141–1153. https://doi.org/10.1016/j.biocon.2009.02.021

  36. Schofield, W.B. (1974) Bipolar disjunctive mosses in the Southern Hemisphere, with particular reference to New Zealand. Journal Hattori Botanical Laboratory 38: 13–32.

  37. Schuster, R.M. (1979) On the persistence and dispersal of transantarctic Hepaticae. Canadian Journal of Botany 57: 2179–2225. https://doi.org/10.1139/b79-271

  38. Schuster, R.M .(1983) Phytogeography of the Bryophyta. In: Schuster, R.M. (Ed.) New Manual of Bryology. The Hattori Botanical Laboratory. Nichinan, Japan, pp. 463–626.

  39. Söderström, L., Hagborg, A., von Konrat, M., Bartholomew-Began, S., Bell, D., Briscoe, L., Brown, E., Cargill, D.C., Costa, D.P., Crandall-Stotler, B.J., Cooper, E.D., Dauphin, G., Engel, J.J., Feldberg, K., Glenny, D., Gradstein, S.R., He, X., Heinrichs, J., Hentschel, J., Ilkiu-Borges, A.L., Katagiri, T., Konstantinova, N.A., Larraín, J., Long, D.G., Nebel, M., Pócs, T., Puche, F., Reiner-Drehwald, E., Renner, M.A.M., Sass-Gyarmati, A., Schäfer-Verwimp, A., Moragues, J.G.S., Stotler, R.E., Sukkharak, P., Thiers, B.M., Uribe, J., Váňa, J., Villarreal, J.C., Wigginton, M., Zhang, L. & Zhu, R.-L. (2016) World checklist of hornworts and liverworts. PhytoKeys 59: 1–828. https://doi.org/10.3897/phytokeys.59.6261

  40. Suzuki, R. & Shimodara, H. (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22: 1540–1542. https://doi.org/10.1093/bioinformatics/btl117

  41. Vanderpoorten, A., Gradstein, S.R., Carine, M.A. & Devos, N. (2009) The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. Cambridge Philosophy Society 85: 471–487. https://doi.org/10.1111/j.1469-185X.2009.00111.x