Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-11-14
Page range: 289-300
Abstract views: 146
PDF downloaded: 8

Piptoporellus taiwanensis sp. nov. (Polyporales, Fomitopsidaceae) from Taiwan and its phytochemistry

Department of Agricultural Chemistry; National Taiwan University; No.1; Sec. 4; Roosevelt Road; Taipei 10617; Taiwan
Kang Jian Biotech Co.; Ltd.; Nantou 54245; Taiwan
Department of Plant Pathology and Microbiology; National Taiwan University; No.1; Sec. 4; Roosevelt Road; Taipei 10617; Taiwan
Department of Economic Plants and Biotechnology; Yunnan Key Laboratory for Wild Plant Resources; Kunming Institute of Botany; Chinese Academy of Sciences; Kunming 650201; China; Centre for Mountain Futures; Kunming Institute of Botany; Kunming 650201; China
Department of Agricultural Chemistry; National Taiwan University; No.1; Sec. 4; Roosevelt Road; Taipei 10617; Taiwan
New species Fomitopsis phylogeny secondary metabolites Fungi

Abstract

Piptoporellus is a recently proposed genus placed under Fomitopsis-like taxa in the Antrodia clade. Four species of Piptoporellus are known, of which three are distributed in China, and one in Africa. A specimen collected around Sun Moon Lake, Nantou County, Taiwan proved to be the first documentation of Piptoporellus in Taiwan. Based on morpho-molecular data, a new species, Piptoporellus taiwanensis, is introduced. In a multi-gene. phylogeny of nuclear ribosomal internal transcribed spacer (nrITS) region, large subunit RNA gene (nrLSU), small subunit RNA gene (nrSSU), and translation elongation factor 1-α gene (tef1-α), the novel taxon formed a distinct clade sister to P. hainanensis and P. triqueter. Phenotypically our strain differs from other Piptoporellus species in having yellow to orange pileus, buff to yellow pore surface, thin-walled basidiospores, and a dimitic hyphal system. Chemical analysis showed that this novel species contained about 3.878 g of total polysaccharides, 112.9 mg of total phenols, 182.9 mg of total flavonoids, 34.33 mg of total triterpenoids, and trace amounts of alkaloids per 100 g of dried fruiting bodies. This study has shed light on the diversity of Piptoporellus taxa in Taiwan and has also shown that this novel species contains significant amounts of polysaccharides, polyphenols, and triterpenoids.

 

References

  1. Bhambri, A., Srivastava, M., Mahale, V.G., Mahale, S. & Karn, S.K. (2022) Mushrooms as potential sources of active metabolites and medicines. Frontiers in Microbiology 13: 837266. https://doi.org/10.3389/fmicb.2022.837266
  2. Butkhup, L., Samappito, W. & Jorjong, S. (2017) Evaluation of bioactivities and phenolic contents of wild edible mushrooms from northeastern Thailand. Food Science and Biotechnology 27: 193–202. https://doi.org/10.1007/s10068-017-0237-5
  3. Chen, Y.Y. & Cui, B.K. (2015) Phylogenetic analysis and taxonomy of the Antrodia heteromorpha complex in China. Mycoscience 57: 1–10. https://doi.org/10.1016/j.myc.2015.07.003
  4. Chen, Y.Y., Li, H.J. & Cui, B.K. (2015) Molecular phylogeny and taxonomy of Fibroporia (Basidiomycota) in China. Phytotaxa 203: 817–827. https://doi.org/10.11646/phytotaxa.203.1.4
  5. Chugh, R.M., Mittal, P., Mp, N., Arora, T., Bhattacharya, T., Chopra, H., Cavalu, S. & Gautam, R. (2022) Fungal mushrooms: a natural compound with therapeutic applications. Frontiers in Pharmacology 13: 925387. https://doi.org/10.3389/fphar.2022.925387
  6. Cui, B.K. & Dai, Y.C. (2013) Molecular phylogeny and morphology reveal a new species of Amyloporia (Basidiomycota) from China. Antonie van Leeuwenhoek 104: 817–827. https://doi.org/10.1007/s10482-013-9994-1
  7. Cui, Z.W., Xu, S.Y., Sun, D.W. & Chen, W. (2006) Dehydration of concentrated Ganoderma lucidum extraction by combined microwave-vacuum and conventional vacuum drying. Drying Technology 24: 595–599. https://doi.org/10.1080/07373930600626792
  8. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350–356. https://doi.org/10.1021/ac60111a017
  9. Gumińska, N., Płecha, M., Walkiewicz, H., Hałakuc, P., Zakryś, B. & Milanowski, R. (2018) Culture purification and DNA extraction procedures suitable for next-generation sequencing of euglenids. Journal of Applied Phycology 30: 3541–3549. https://doi.org/10.1007/s10811-018-1496-0
  10. Han, M.L., Song, J. & Cui, B.K. (2014) Morphology and molecular phylogeny for two new species of Fomitopsis (Basidiomycota) from South China. Mycological Progress 13: 905–914. https://doi.org/10.1007/s11557-014-0976-0
  11. Han, M.L., Vlasák, J. & Cui, B.K. (2015) Daedalea americana sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Phytotaxa 204: 277–286. https://doi.org/10.11646/phytotaxa.204.4.4
  12. Han, M.L., Chen, Y.Y., Shen, L.L., Song, J., Vlasák, J., Dai, Y.C. & Cui, B.K. (2016) Taxonomy and phylogeny of the brown-rot fungi: Fomitopsis and its related genera. Fungal Diversity 80: 343–373. https://doi.org/10.1007/s13225-016-0364-y
  13. Jülich, W. (1981) Higher taxa of Basidiomycetes. Bibliography of Systematic Mycology 85; 1–485.
  14. Kettawan, A., Chanlekha, K., Kongkachuichai, R. & Charoensiri, R. (2011) Effects of cooking on antioxidant activities and polyphenol content of edible mushrooms commonly consumed in Thailand. Pakistan Journal of Nutrition 10: 1094–1103. https://doi.org/10.3923/pjn.2011.1094.1103
  15. Kim, K.M., Lee, J.S. & Jung, H.S. (2007) Fomitopsis incarnatus sp. nov. based on generic evaluation of Fomitopsis and Rhodofomes. Mycologia 99: 833–841. https://doi.org/10.3852/mycologia.99.6.833
  16. Kornerup, A. & Wanscher, J.H. (1962) Reinhold Color Atlas. Reinhold Publishing Corporation, New York, USA, 224 pp.
  17. Li, H.J. & Cui, B.K. (2013) Two new Daedalea species (Polyporales, Basidiomycota) from South China. Mycoscience 54: 62–68. https://doi.org/10.1016/j.myc.2012.07.005
  18. Ma, G., Du, H., Hu, Q., Yang, W., Pei, F. & Xiao, H. (2022) Health benefits of edible mushroom polysaccharides and associated gut microbiota regulation. Critical Reviews in Food Science and Nutrition 62: 6646–6663. https://doi.org/10.1080/10408398.2021.1903385
  19. Mešić, A., Šamec, D., Jadan, M., Bahun, V. & Tkalčec, Z. (2020) Integrated morphological with molecular identification and bioactive compounds of 23 Croatian wild mushrooms samples. Food Bioscience 37: 100720. https://doi.org/10.1016/j.fbio.2020.100720
  20. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2011) The CIPRES science gateway: a community resource for phylogenetic analyses. In: Proceedings of the 2011 TeraGrid Conference: extreme digital discovery, Salt Lake City, Utah, USA, July 18–21. pp. 1–8.
  21. Noushahi, H.A., Khan, A.H., Noushahi, U.F., Hussain, M., Javed, T., Zafar, M., Batool, M., Ahmed, U., Liu, K., Harrison, M.T., Saud, S., Fahad, S. & Shu, S. (2022) Biosynthetic pathways of triterpenoids and strategies to improve their biosynthetic efficiency. Plant Growth Regulation 97: 439–454. https://doi.org/10.1007/s10725-022-00818-9
  22. Núñez, M. & Ryvarden, L. (2001) East Asian Polypores. Fungiflora. Synopsis Fungorum 14 Vol. 2: Polyporaceaes. lato. Fungiflora, Oslo, Norway, 288 pp.
  23. Nylander, J.A.A. (2004) MrModeltest. 2.2. Available from: http://www.abc.se/~nylander/
  24. Rambaut, A. & Drummond, A. (2012) FigTree: tree figure drawing tool. 1.4.2. Institute of Evolutionary Biology, University of Edinburgh, Scotland, U.K.
  25. Rana, A., Samtiya, M., Dhewa, T., Mishra, V. & Aluko, R.E. (2022) Health benefits of polyphenols: a concise review. Journal of Food Biochemistry 46: e14264. https://doi.org/10.1111/jfbc.14264
  26. Ribeiro, B., Lopes, R., Andrade, P.B., Seabra, R.M., Gonçalves, R.F., Baptista, P., Quelhas, I. & Valentão, P.C. (2008) Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chemistry 110: 47–56. https://doi.org/10.1016/j.foodchem.2008.01.054
  27. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
  28. Shahidi, F., Varatharajan, V., Oh, W.Y. & Peng, H. (2019) Phenolic compounds in agri-food byproducts, their bioavailability and health effects. Journal of Food Bioactives 5: 57–119. https://doi.org/10.31665/JFB.2019.5178
  29. Song, J., Sun, Y.F., Ji, X., Dai, Y.C. & Cui, B.K. (2018) Phylogeny and taxonomy of Laetiporus (Basidiomycota, Polyporales) with descriptions of two new species from western China. MycoKeys 37: 57–71. https://doi.org/10.3897/mycokeys.37.26016
  30. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  31. Su, C.H., Lai, M.N., Lin, C.C. & Ng, L.T. (2016) Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Applied Microbiology and Biotechnology 100: 4385–4393. https://doi.org/10.1007/s00253-015-7260-3
  32. Su, C.H., Lu, M.K., Lu, T.J., Lai, M.N. & Ng, L.T. (2020) A (1→6)-branched (1→4)-β-d-glucan from Grifola frondosa inhibits lipopolysaccharide-induced cytokine production in RAW264.7 15macrophages by binding to TLR2 rather than Dectin-1 or CR3 receptors. Journal of Natural Products 83: 231–242. https://doi.org/10.1021/acs.jnatprod.9b00584
  33. Tibuhwa, D.D., Hussein, J.M., Ryvarden, L., Sijaona, M.E.R. & Tibell, S. (2020) A phylogeny for the plant pathogen Piptoporellus baudonii using a multigene data set. Mycologia 112: 1017–1025. https://doi.org/10.1080/00275514.2020.1801303
  34. Tsai, I., Maharachchikumbura, S.S., Hyde, K.D. & Ariyawansa, H.A. (2018) Molecular phylogeny, morphology and pathogenicity of Pseudopestalotiopsis species on Ixora in Taiwan. Mycological Progress 17: 941–952. https://doi.org/10.1007/s11557-018-1404-7
  35. Tseng, H.M., Lu, T.M. & Ng, L.T. (2022) Responses of Cynanchum taiwanianum and its bioactive compound biosynthesis to levels of nitrogen and potassium fertilization. Agronomy 12: 180. https://doi.org/10.3390/agronomy12010180
  36. Turkoglu, A., Duru, M.E., Mercan, N., Kivrak, I. & Gezer, K. (2007) Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chemistry 101: 267–273. https://doi.org/10.1016/j.foodchem.2006.01.025
  37. Van Tan, P. (2018) The determination of total alkaloid, polyphenol, flavonoid and saponin contents of Pogang gan (Curcuma sp.). International Journal of Biology 10: 42–47. https://doi.org/10.5539/ijb.v10n4p42
  38. Xu, J., Shen, R., Jiao, Z., Chen, W., Peng, D., Wang, L., Yu, N., Peng, C., Cai, B., Song, H., Chen, F. & Liu, B. (2022) Current advancements in antitumor properties and mechanisms of medicinal components in edible mushrooms. Nutrients 14: 2622. https://doi.org/10.3390/nu14132622
  39. Zhao, S., Gao, Q., Rong, C., Wang, S., Zhao, Z., Liu, Y. & Xu, J. (2020) Immunomodulatory effects of edible and medicinal mushrooms and their bioactive immunoregulatory products. Journal of Fungi 6: 269. https://doi.org/10.3390/jof6040269
  40. Zorrilla, J.G. & Evidente, A. (2022) Structures and biological activities of alkaloids produced by mushrooms, a fungal subgroup. Biomolecules 12: 1025. https://doi.org/10.3390/biom12081025