Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-03-21
Page range: 255-266
Abstract views: 97
PDF downloaded: 2

Biscogniauxia dicranopteridis sp. nov. and B. petrensis isolated from Dicranopteris dichotoma in China

School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China.
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China. Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China.
School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, P.R. China.
1 new taxon endophytic fungi Graphostromataceae phylogeny taxonomy Fungi

Abstract

Species of Biscogniauxia (Graphostromataceae) are known as pathogens and endophytes, distributed worldwide. In this study, we isolated two new endophytic strains of Biscogniauxia from Dicranopteris dichotoma. A new species, B. dicranopteridis, and a new host record of B. petrensis were identified based on morphology and phylogenetic analysis of four genes loci (LSU, ITS, RPB2 and β-TUB). Detailed descriptions and illustrations of the two new isolates, along with a phylogenetic tree depicting the position of the new species, are provided.

References

  1. Bahmani, Z., Abdollahzadeh, J., Amini, J. & Evidente, A. (2021) Biscogniauxia rosacearum the charcoal canker agent as a pathogen associated with grapevine trunk diseases in Zagros region of Iran. Scientific Reports 11 (1): 1–7. https://doi.org/10.1038/s41598-021-93630-w
  2. Barr, M.E., Rogers, J.D. & Ju, Y.M. (1993) Revisionary studies in the Calosphaeriaceae. Mycotaxon 48: 529–535
  3. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  4. Cheng, M.-J., Wu, M.-D., Yanai, H., Su, Y.-S., Chen, I.-S., Yuan, G.-F., Hsieh, S.-Y. & Chen, J.-J. (2012) Secondary metabolites from the endophytic fungus Biscogniauxia formosana and their antimycobacterial activity. Phytochemistry Letters 5 (3): 467–472. https://doi.org/10.1016/j.phytol.2012.04.007
  5. Choi, H.S., Park, H., Eo, J.K. & Eom, A.H. (2020) Unrecorded Endophytic Fungi Isolated from Mnium heterophyllum and Hypnum plumaeforme in Korea: Biscogniauxia petrensis and Cercophora thailandica. The Korean Journal of Mycology 48 (1): 55–61. https://doi.org/10.4489/KJM.20200006
  6. Crous, P.W., Osieck, E.R., Jurjevi, Ž, Boers, J., Van Iperen, A.L., Starink-Willemse, M., Dima, B., Balashov, S., Bulgakov, T.S., Johnston, P.R., Morozova, O.V., Pinruan, U., Sommai, S., Alvarado, P., Decock, C.A., Lebel, T., McMullan-Fisher, S., Moreno, G., Shivas, R.G., Zhao, L., Abdollahzadeh, J., Abrinbana, M., Ageev, D.V., Akhmetova, G., Alexandrova, A.V., Altés, A., Amaral, A.G.G., Angelini, C., Antonín, V., Arenas, F., Asselman, P., Badali, F., Baghela, A., Bañares, A., Barreto, R.W., Baseia, I.G., Bellanger, J.-M., Berraf-Tebbal, A., Biketova, A. Yu., Bukharova, N.V., Burgess, T.I., Cabero, J., Câmara, M.P.S., Cano-Lira, J.F., Ceryngier, P., Chávez, R., Cowan, D.A., de Lima, A.F., Oliveira, R.L., Denman, S., Dang, Q.N., Dovana, F., Duarte, I.G., Eichmeier, A., Erhard, A., Esteve-Raventós, F., Fellin, A., Ferisin, G., Ferreira, R.J., Ferrer, A., Finy, P., Gaya, E., Geering, A.D.W., Gil-Durán, C., Glässnerová, K., Glushakova, A.M., Gramaje, D., Guard, F.E., Guarnizo, A.L., Haelewaters, D., Halling, R.E., Hill, R., Hirooka, Y., Hubka, V., Iliushin, V.A., Ivanova, D.D., Ivanushkina, N.E., Jangsantear, P., Justo, A., Kachalkin, A.V., Kato, S., Khamsuntorn, P., Kirtsideli, I.Y., Knapp, D.G., Kochkina, G.A., Koukol, O., Kovács, G.M., Kruse, J., Kumar, T.K.A., Kušan, I., Læssøe, T., Larsson, E., Lebeuf, R., Levicán, G., Loizides, M., Marinho, P., Luangsa-ard, J.J., Lukina, E.G., Magaña-Dueñas, V., Maggs-Kölling, G., Malysheva, E.F., Malysheva, V.F., Martín, B., Martín, M.P., Matočec, N., McTaggart, A.R., Mehrabi-Koushki, M., Mešić, A., Miller, A.N., Mironova, P., Moreau, P.-A., Morte, A., Müller, K., Nagy, L.G., Nanu, S., Navarro-Ródenas, A., Nel, W.J., Nguyen, T.H., Nóbrega, T.F., Noordeloos, M.E., Olariaga, I., Overton, B.E., Ozerskaya, S.M., Palani, P., Pancorbo, F., Papp, V., Pawłowska, J., Pham, T.Q., Phosri, C., Popov, E.S., Portugal, A., Pošta, A., Reschke, K., Reul, M., Ricci, G.M., Rodríguez, A., Romanowski, J., Ruchikachorn, N., Saar, I., Safi, A., Sakolrak, B., Salzmann, F., Sandoval-Denis, M., Sangwichein, E., Sanhueza, L., Sato, T., Sastoque, A., Senn-Irlet, B., Shibata, A., Siepe, K., Somrithipol, S., Spetik, M., Sridhar, P., Stchigel, A.M., Stuskova, K., Suwannasai, N., Tan, Y.P., Thangavel, R., Tiago, I., Tiwari, S., Tkalčec, Z., Tomashevskaya, M.A., Tonegawa, C., Tran, H.X., Tran, N.T., Trovão, J., Trubitsyn, V.E., Van Wyk, J., Vieira, W.A.S., Vila, J., Visagie, C.M., Vizzini, A., Volobuev, S.V., Vu, D.T., Wangsawat, N., Yaguchi, T., Ercole, E., Ferreira, B.W., de Souza, A.P., Vieira, B.S. & Groenewald, J.Z. (2021) Fungal Planet description sheets: 1284–1382. Persoonia-Molecular Phylogeny and Evolution of Fungi 47 (1): 178–374. https://doi.org/10.3767/persoonia.2021.47.06
  7. Daniel, G.P., Daniel, G.B., Miguel, R.J., Florentino, F.R. & David, P. (2020) ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acids Research 38: W14–W18. https://doi.org/10.1093/nar/gkq321
  8. Daranagama, D.A., Hyde, K.D., Sir, E.B., Thambugala, K.M., Tian, Q., Samarakoon, M.C., McKenzie, E.H.C., Jayasiri, S.C., Tibpromma, S., Bhat, J.D., Liu, X. & Stadler, M. (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Diversity 88: 1–165. https://doi.org/10.1007/s13225-017-0388-y
  9. Das, K., Kim, J.H., Choi, K.S., Lee, S.Y. & Jung, H.Y. (2020) A new report of Biscogniauxia petrensis isolated from mosquitoes in Korea. The Korean Journal of Mycology 48 (2): 87–93. https://doi.org/10.4489/KJM.20200010
  10. Granata, G. & Sidoti, A. (2004) Biscogniauxia nummularia: pathogenic agent of a beech decline. Forest Pathology 34 (6): 363–367. https://doi.org/10.1111/j.1439-0329.2004.00377.x
  11. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41 (41): 95–98.
  12. Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42 (2): 182–192. https://doi.org/10.1093/sysbio/42.2.182
  13. Hyde, K.D., Norphanphoun, C., Maharachchikumbura, S.S.N., Bhat, D.J., Jones, E.B.G., Bundhun, D., Chen, Y.J., Bao, D.F., Boonmee, S., Calabon, M.S., Chaiwan, N., Chethana, K.W.T., Dai, D.Q., Dayarathne, M.C., Devadatha, B., Dissanayake, A.J., Dissanayake, L.S., Doilom, M., Dong, W., Fan, X.L., Goonasekara, I.D., Hongsanan, S., Huang, S.K., Jayawardena, R.S., Jeewon, R., Karunarathna, A., Konta, S., Kumar, V., Lin, C.G., Liu, J.K., Liu, N.G., Luangsa-ard, J., Lumyong, S., Luo, Z.L., Marasinghe, D.S., McKenzie, E.H.C., Niego, A.G.T., Niranjan, M., Perera, R.H., Phukhamsakda, C., Rathnayaka, A.R., Samarakoon, M.C., Samarakoon, S.M.B.C., Sarma, V.V., Senanayake, I.C., Shang, Q.J., Stadler, M., Tibpromma, S., Wanasinghe, D.N., Wei, D.P., Wijayawardene, N.N., Xiao, Y.P., Yang, J., Zeng, X.Y., Zhang, S.N. & Xiang, M.M. (2020) Refined families of Sordariomycetes. Mycosphere 11 (1): 305–1059. https://doi.org/10.5943/mycosphere/11/1/7
  14. Ju, Y.M., Rogers, J.D., San Martin, F. & Granmo, A. (1998) The genus Biscogniauxia. Mycotaxon 66 (en prensa).
  15. Jurc, D. & Ogris, N. (2006) First reported outbreak of charcoal disease caused by Biscogniauxia mediterranea on Turkey oak in Slovenia. Plant Pathology 55 (2): 299–299. https://doi.org/10.1111/j.1365-3059.2005.01297.x
  16. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  17. Kuntze, O. (1891) Revisio generum plantarum vascularium omnium atque cellularium multarum secundum leges nomenclaturae internationales cum enumeratione plantarum exoticarum in itinere mundi collectarum. Lauraceae 2: 375–1011.
  18. Lee, Y.S. (2000) Observation of soft-rot wood degradation caused by higher Ascomyceteous fungi. Mycobiology 28 (1): 47–50. https://doi.org/10.1080/12298093.2000.12015721
  19. Li, Q., Gong, X., Zhang, X., Pi, Y., Long, S., Wu, Y., Shen, X., Kang, Y. & Kang, J. (2021) Phylogeny of Graphostromatacea with two new species (Biscogniauxia glaucae sp. nov. and Graphostroma guizhouensis sp. nov.) and new record of Camillea broomeana isolated in China. Archives of Microbiology 203: 6119–6129. https://doi.org/10.1007/s00203-021-02574-2
  20. Linnakoski, R., Puhakka-Tarvainen, H. & Pappinen, A. (2012) Endophytic fungi isolated from Khaya anthotheca in Ghana. Fungal Ecology 5 (3): 298–308. https://doi.org/10.1016/j.funeco.2011.08.006
  21. Liu, Y.J., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16 (12): 1799–1808.
  22. Luchi, N., Capretti, P., Feducci, M., Vannini, A., Ceccarelli, B. & Vettraino, A.M. (2015) Latent infection of Biscogniauxia nummularia in Fagus sylvatica: a possible bioindicator of beech health conditions. IForest-Biogeosciences and Forestry 9 (1): 49. https://doi.org/10.3832/ifor1436-008
  23. Ma, X.Y., Nontachaiyapoom, S., Hyde, K.D., Jeewon, R., Doilom, M., Chomnunti, P. & Kang, J.C. (2020) Biscogniauxia dendrobii sp. nov. and B. petrensis from Dendrobium orchids and the first report of cytotoxicity (towards A549 and K562) of B. petrensis (MFLUCC 14–0151) in vitro. South African Journal of Botany 134: 382–393. https://doi.org/10.1016/j.sajb.2020.06.022
  24. Maharachchikumbura, S.S.N., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Huang, S.K., Abdel-Wahab, M.A., Daranagama, D.A., Dayarathne, M., D’souza, M.J., Goonasekara, I.D., Hongsanan, S., Jayawardena, R.S., Kirk, P.M., Konta, S., Liu, J.K., Liu, Z.Y., Norphanphoun, C., Pang, K.L., Perera, R.H., Senanayake, I.C., Shang, Q., Shenoy, B.D., Xiao, Y., Bahkali, A.H., Kang, J., Somrothipol, S., Suetrong, S., Wen, T. & Xu, J. (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72: 199–301. https://doi.org/10.1007/s13225-015-0331-z
  25. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: 2010 gateway computing environments workshop (GCE). New Orleans, LA. pp. 1–8. https://doi.org/10.1109/gce.2010.5676129
  26. Nugent, L.K., Sihanonth, P., Thienhirun, S. & Whalley, A.J.S. (2005) Biscogniauxia: a genus of latent invaders. Mycologist 19 (1): 40–43. https://doi.org/10.1017/S0269915X05001060
  27. Nylander, J.A.A. (2004) MrModeltest Version 2. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University,
  28. Pouzar, Z. (1979) Notes on taxonomy and nomenclature of Nummularia (Pyrenomycetes). Ceska Mycology 33: 207–219.
  29. Uppsala.Raimondo, M.L., Lops, F. & Carlucci, A. (2016) Charcoal canker of pear, plum, and quince trees caused by Biscogniauxia rosacearum sp. nov. in southern Italy. Plant Disease 100 (9): 1813–1822. https://doi.org/10.1094/PDIS-09-15-1037-RE
  30. Sahoo, S., Subban, K. & Chelliah, J. (2021) Diversity of marine macro-algicolous endophytic fungi and cytotoxic potential of Biscogniauxia petrensis metabolites against cancer cell lines. Frontiers in Microbiology 12: 650177. https://doi.org/10.3389/fmicb.2021.650177
  31. Samarakoon, M.C., Hyde, K.D., Maharachchikumbura, S.S.N., Stadler, M., Jones, E.B.G., Promputtha, I., Suwannarach, N., Camporesi, E., Bulgakov, T.S. & Liu, J.K. (2022) Taxonomy, phylogeny, molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). Fungal Diversity 112 (1): 1–88. https://doi.org/10.1007/s13225-021-00495-5
  32. Stadler, M., Kuhnert, E., Peršoh, D. & Fournier, J. (2013) The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept. Mycology 4 (1): 5–21. https://doi.org/10.1080/21501203.2013.782478
  33. Sritharan, T., Savitri Kumar, N., Jayasinghe, L., Araya, H. & Fujimoto, Y. (2019) Isocoumarins and dihydroisocoumarins from the endophytic fungus Biscogniauxia capnodes isolated from the fruits of Averrhoa carambola. Natural Product Communications 14 (5). https://doi.org/10.1177/1934578X19851969
  34. Tang, A.M.C., Jeewon, R. & Hyde, K.D. (2009) A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences. Fungal Diversity 34 (1): 127–155.
  35. Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27 (2): 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  36. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238–4246.
  37. Vujanovic, V., Kim, S.H., Latinovic, J. & Latinovic, N. (2020) Natural Fungicolous Regulators of Biscogniauxia destructiva sp. nov. That Causes Beech Bark Tarcrust in Southern European (Fagus sylvatica) Forests. Microorganisms 8 (12): 1999. https://doi.org/10.3390/microorganisms8121999
  38. Wendt, L., Sir, E.B., Kuhnert, E., Heitkamper, S., Lambert, C., Hladki, A.I., Romero, A.I., Luangsaard, J.J., Srikitikulchai, P., Persoh, D. & Stadler, M. (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycological Progress 17: 115–154. https://doi.org/10.1007/s11557-017-1311-3
  39. White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A Guide to Methods and Applications 18 (1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
  40. Yang, J.H., Oh, S.Y., Kim, W. & Hur, J.S. (2022) Endolichenic Fungal Community Analysis by Pure Culture Isolation and Metabarcoding: A Case Study of Parmotrema tinctorum. Mycobiology 50 (1): 55–65. https://doi.org/10.1080/12298093.2022.2040112
  41. Zhang, Z.F., Liu, F., Zhou, X., Liu, X.Z., Liu, S.J. & Cai, L. (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia -Molecular Phylogeny and Evolution of Fungi 39 (1): 1–31. https://doi.org/10.3767/persoonia.2017.39.01