Abstract
Systematic studies in the Calea myrtifolia complex have revealed two noteworthy new taxa from the contact, relict and transitional areas of the Atlantic Forest and Cerrado domains in Brazil: Calea grandiflora and Calea × parviantha, both having been treated as C. myrtifolia, now considered endemic to Minas Gerais state, Brazil. Thus, we herein provide morphological descriptions, illustrations, geographical distribution maps and discuss their taxonomic affinities. Moreover, their potential distributions are predicted. Calea grandiflora is related to C. arachnoidea and is recognized by the basal acrodromous venation (vs. semicraspedodromous), outer phyllary series 12.2–20 × 4.2–10.6 mm long (vs. 9–12 × 3–5 mm), and ray floret corolla 16.9–31 mm long (vs. 10–12 mm). Calea × parviantha is a new nothospecies, supported by a unique set of character states partially shared with the parental species C. parvifolia and C. triantha. The new hybrid species has intermediate morphology, as demonstrated by a multivariate analysis. It differs from C. parvifolia by the hispid, hispidulous or glabrous stems (vs. puberulous or puberulent) and coriaceous leaves (vs. chartaceous leaves), and from C. triantha by the rounded leaf base, sometimes subcordate (vs. cordate) and pappus scales 1.1–2.7 mm long (vs. 0.8–1.3 mm). Furthermore, we provide a taxonomic key for Calea in the states of São Paulo and Paraná.
References
<p>Alvarez, I. & Wendel, J.F. (2003) Ribosomal ITS sequences and plant phylogenetic inference. <em>Molecular Phylogenetics and Evolution</em> 29 (3): 417–434. https://doi.org/10.1016/S1055-7903(03)00208-2</p>
<p>Bachman, S., Moat, J., Hill, A.W., Torre, J. & Scott, B. (2011) Supporting Red List threat assessments with GeoCAT: Geospatial conservation assessment tool. <em>ZooKeys</em> 150: 117–126. https://doi.org/10.3897/zookeys.150.2109</p>
<p>Baker, J.G. (1884) Compositae: Helianthoideae. <em>In:</em> Martius, C.F.P. & von Eichler, A.W. (Eds.) <em>Flora brasiliensis.</em> Oldenbourgh, Munchen and Leipzig, pp. 251–258.</p>
<p>Barroso, G.M. (1975) De Compositarum Novitatibus. <em>Sellowia </em>26: 102–118.</p>
<p>Beentje, H. (2010) <em>The Kew Plant Glossary an Illustrated Dictionary of Plant Terms</em>. Kew Publishing, Richmond, 160 pp.</p>
<p>Berchtold, F.W. & Presl, J.S. (1820) <em>O Prirozenosti Rostlin</em>. Krala Wiljma Endersa, Prague, 322 pp.</p>
<p>Blake, S.F. (1937) Eleven new Asteraceae from North and South America. <em>Journal of the Washington Academy of Sciences</em> 27: 374–391.</p>
<p>Breiman, L. (2001) Random forests. <em>Machine Learning</em> 45: 5–32. https://doi.org/10.1023/A:1010933404324</p>
<p>Brochmann, C. (1987) Evaluation of some methods for hybrid analysis, exemplified by hybridization in <em>Argyranthemum</em> (Asteraceae). <em>Nordic Journal of Botany</em> 7: 609–630. https://doi.org/10.1111/j.1756-1051.1987.tb02030.x</p>
<p>Brown, R. (1817) <em>Observations on the Natural Family of Plants called Compositae</em>. London, pp. 75–142. https://doi.org/10.5962/bhl.title.140190</p>
<p>Bueno, V.R. & Heiden, G. (2021) <em>Calea funkiana</em> (Compositae, Neurolaeneae), a new species endemic from Serra do Cipó, Minas Gerais, Brazil. <em>Systematic Botany</em> 46 (2): 470–475. https://doi.org/10.1600/036364421X16231782047497</p>
<p>Bueno, V.R. & Heiden, G. (2022a) Novelties in <em>Calea</em> sect. <em>Meyeria</em> (Asteraceae, Neurolaeneae) from Brazil. <em>Systematic Botany </em>47 (2): 575–585. https://doi.org/10.1600/036364422X16512564801632</p>
<p>Bueno, V.R. & Heiden, G. (2022b) <em>Calea sessilifolia </em>(Asteraceae, Neurolaeneae), an unusual new species from the Diamantina Plateau, Minas Gerais, Brazil. <em>Systematic Botany </em>47 (2): 586–592. https://doi.org/10.1600/036364422X16512564801687</p>
<p>Bueno, V.R., Gostel, M.R. & Heiden, G. (2021) An overview of Neurolaeneae (Compositae). <em>Capitulum </em>1: 36–43. https://doi.org/10.53875/capitulum.01.1.03</p>
<p>Bueno, V.R., Gostel, M.R. & Heiden, G. (2022) <em>Calea repanda </em>(Asteraceae, Neurolaeneae), a new species of <em>Calea</em> and new taxonomic implications for the genus. <em>Phytotaxa </em>544 (3): 280–288. https://doi.org/10.11646/phytotaxa.544.3.2</p>
<p>Cardo, O.G. & Melgar, I.S. (2021) <em>Achillea</em> × <em>keuperi</em>, nothospecies nov. (sect. <em>Achillea</em>, Asteraceae). <em>Flora Montiberica</em> 79: 113–115.</p>
<p>Cassini, A.H.G. (1819) Suite du sixième mémoire sur la famille des Synanthérées, contenant les caractères des tribus. <em>Journal de Physique, de Chimie, d´Historie Naturelle et des Arts </em>88: 189–204.</p>
<p>Deble, L.P. & Oliveira-Deble, A.S. (2011) Novelties to Compositae Family in Rio Grande do Sul State Flora. <em>Balduinia </em>29: 1–8. https://doi.org/10.5902/2358198014131</p>
<p>Desjardins, S.D., Hoare, A.G. & Stace, C.A. (2016) A new natural hybrid in the genus <em>Petasites</em>: <em>P. japonicus</em> × <em>P. pyreinacus</em> (Asteraceae). <em>New Journal of Botany</em> 6: 2–3. https://doi.org/10.1080/20423489.2016.1271383</p>
<p>Diaz-Piedrahita, S. & Rodríguez-Cabeza, B.V. (2012) Novedades em Asteráceas Colombianas II. <em>Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales</em> 36 (141): 501–515.</p>
<p>Ellis, B., Daly, D.C., Hickey, L.J., Johnson, K.R., Mitchell, J.D., Wilf, P. & Wing, S.L. (2009) <em>Manual of Leaf Architecture</em>. The New York Botanical Garden Press, New York, 190 pp. https://doi.org/10.1079/9781845935849.0000</p>
<p>Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. <em>International Journal of Climatology</em> 37 (12): 4302–4315. https://doi.org/10.1002/joc.5086</p>
<p>Filigheddu, R., Farris, E., Pisanu, S., Urbani, M. & Susanna, A. (2014) Validation of the name <em>Centaurea × forsythiana</em> Levier (Asteraceae). <em>Phytotaxa</em> 166 (4): 297–300. https://doi.org/10.11646/phytotaxa.166.4.6</p>
<p>Forester, B.R., De Chaine, E.G. & Bunn, A.G. (2013) Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. <em>Diversity and Distributions</em> 19: 1480–1495. https://doi.org/10.1111/ddi.12098</p>
<p>Funk, V.A., Susanna, A., Stuessy, T.F. & Robinson, H. (2009) <em>Systematics, Evolution and Biogeography of Compositae</em>. International Association for Plant Taxonomy, Vienna, 965 pp.</p>
<p>Garrison, H., Shultz, L.M. & McArthur, D. (2013) Studies of a New Hybrid Taxon in the <em>Artemisia tridentata </em>(Asteraceae: Anthemideae) Complex. <em>Western North American </em>73 (1): 1–19. https://doi.org/10.3398/064.073.0101</p>
<p>Gemenholzer, B., Granica, S., Moura, M., Teufel, L. & Zidorn, C. (2017) <em>Leontodon</em> × <em>grassiorum</em> (Asteraceae, Cichorieae), a newly discovered hybrid between an Azorean and a mainland taxon: morphology, molecular characteristics, and phytochemistry. <em>Biochemical Systematics and Ecology</em> 72: 32–39. https://doi.org/10.1016/j.bse.2017.04.001</p>
<p>Graham, M.H. (2003) Confronting multicollinearity in ecological multiple regression. <em>Ecology</em> 84: 2809–2815. https://doi.org/10.1890/02-3114</p>
<p>Gruenstaudl, M., Carstens, B.C., Santos-Guerra, A. & Jansen, R.K. (2017) Statistical hybrid detection and the inference of ancestral distribution in <em>Tolpis</em> (Asteraceae). <em>Biological Journal of the Linnean Society</em> 121: 133–149. https://doi.org/10.1093/biolinnean/blw014</p>
<p>Hickey, L.J. (1973) Classification of the architecture of dicotyledonous leaves. <em>American Journal of Botany</em> 60: 17–33. https://doi.org/10.1002/j.1537-2197.1973.tb10192.x</p>
<p>Hijmans, R.J. & Graham, C.H. (2006) Testing the ability of climate envelope models to predict the effect of climate change on species distributions. <em>Global Change Biology </em>12: 2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x</p>
<p>Ilçim, A., Ozçelik, H. & Çenet, M. (2013) A new natural hybrid of <em>Cousinia</em> Cass. (Asteraceae) from Turkiye. <em>Biological Diversity and Conservation</em> 6 (1): 71–75.</p>
<p>IUCN (2019) <em>Guidelines for using the IUCN red list categories and criteria</em>, version 13. Prepared by the Standards and Petitions Committee, Cambridge U.K. Available from: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (acessed 13 January 2022)</p>
<p>Jazwa, M., Jedrzejczak, E., Klichowska, E. & Pliszko, A. (2018) Predicting the potential distribution area of <em>Solidago</em> × <em>niederederi</em> (Asteraceae). <em>Turkish Journal of Botany</em> 42: 51–56.</p>
<p>Lamarck, J.B.A.P.M. & Candolle, A.P. (1806) <em>Synopsis plantarum in Flora Gallica Descriptarum</em>. Pritzel, Geneve, 432 pp. https://doi.org/10.5962/bhl.title.6624</p>
<p>Lecoq, H. & Juillet, J. (1831) <em>Dictionnaire raisonné des termes de botanique et des familles naturelles</em>. J. B. Baillière, Paris, 719 pp.</p>
<p>Li, H., Ren, C., Yang, Q. & Yuan, Q. (2015) A new natural hybrid of <em>Sphagneticola</em> (Asteraceae, Heliantheae) from Guangdong, China. <em>Phytotaxa</em> 221 (1): 71–76. https://doi.org/10.11646/phytotaxa.221.1.7</p>
<p>Linnaeus, C. von. (1763) <em>Species plantarum</em>, ed. 2, vol. 2. L. Salvius, Stockholm, pp. 785–1684.</p>
<p>Lipman, M.J., Chester, M., Soltis, P.S. & Soltis, D.E. (2013) Natural hybrids between <em>Tragopogon mirus</em> and <em>T. miscellus</em> (Asteraceae): A new perspective on karyotypic changes following hybridization at the polyploid level. <em>American Journal of Botany</em> 100 (10): 2016–2022. https://doi.org/10.3732/ajb.1300036</p>
<p>Loeuille, B., Semir, J., Lohmann, L.G. & Pirani, J.R. (2015) A phylogenetic analysis of Lycnophorinae (Asteraceae: Vernonieae) based on molecular and morphological data. <em>Systematic Botany</em> 40 (1): 299–315. https://doi.org/10.1600/036364415X686585</p>
<p>Malme, G.O.A. (1933) Compositae paranenses<em>. Kongliga Svenska Vetenskaps Academiens Handlingar</em> 12 (2): 1–122.</p>
<p>Mameli, G., López-Alvarado, J., Farris, E., Susanna, A., Filigheddu, R. & Garcia-Jacas, N. (2013) The role of parental and hybrid species in multiple introgression events: evidence of homoploid hybrid speciation in <em>Centaurea</em> (Cardueae, Asteraceae). <em>Botanical Journal of the Linnean Society</em> 175: 453–467. https://doi.org/10.1111/boj.12177</p>
<p>McCullagh, P. & Nelder, J.A. (1989) <em>Generalized Linear Models</em>. Chapman and Hall, London, 510 pp. https://doi.org/10.1007/978-1-4899-3242-6</p>
<p>Mitchell, N., Campbell, L.G., Ahern, J.R., Paine, K.C., Giroldo, A.B. & Whitney, K.D. (2019) Correlates of hybridization in plants. <em>Evolution Letters</em> 3–6: 570–585. https://doi.org/10.1002/evl3.146</p>
<p>Moreira, M.M., Carrijo, T.T., Alves-Araújo, A., Amorim, A.M.A., Rapini, A., da Silva, A.V.S. Cosenza, B.A.P., Lopes, C.R., Delgado, C.N., Kameyama, C., Couto, D.R., Barbosa, D.E.F., Monteiro, D., Gonzaga, D.R., Dalcin, E.C., Guimarães, E.F., de Lírio, E.J., Matos, F.B., Salimena, F.R.G., Oliveira, F.A., Heiden, G., Lanna, J.M., Baumgratz, J.F., Pastore, J.F.B., Oliveira, J.R.P.M., Barcelos, L.B., Sylvestre, L.S., Freitas, L., Giacomin, L.L., Pederneiras, L., Meireles, L.D., Lohmann, L.G., Pereira, L.C., Silva, L.A.E., Neto, L.M., Souza, M.C., Trovó, M., Sobral, M.E.G., Garbin, M.L., Gomes, M., Morim, M.P., Mota, M.C.A., Labiak, P.H., Viana, P.L., de Moraes, P.L.R., Goldenberg, R., Coelho, R.L.G., Furtado, S.G., da Silva-Neto, S.J., Flores, T.B., Dutra, V.F., Bueno, V.R. & Forzza, R.C. (2020) Using online databases to produce comprehensive accounts of the vascular plants from the Brazilian protected areas: The Parque Nacional do Itatiaia as a case study. <em>Biodiversity Data Journal</em> 8: e50837. https://doi.org/10.3897/BDJ.8.e50837</p>
<p>Mundell, A.R.G. (2016) The genus <em>Conyza</em> in Britain and a name for the hybrid between <em>Erigeron acris</em> and <em>Conyza floribunda</em> (Asteraceae). <em>New Journal of Botany</em> 6 (1): 16–20. https://doi.org/10.1080/20423489.2016.1173806</p>
<p>Naimi, B. & Araújo, M.B. (2016) Sdm: a reproducible and extensible R platform for 643 species distribution modelling. <em>Ecography</em> 39: 368–375. https://doi.org/10.1111/ecog.01881</p>
<p>Naimi, B., Hamm, N.A., Groen, T.A., Skidmore, A.K. & Toxopeus, A.G. (2014) Where is positional uncertainty a problem for species distribution modelling? <em>Ecography</em> 37: 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x</p>
<p>Nauheimer, L., Cui, L., Clarke, C., Crayn, D.M., Bourke, G. & Nargaret, K. (2019) Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales). <em>Australian Systematic Botany</em> 32: 243–254. https://doi.org/10.1071/SB18057</p>
<p>Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. (2020) <em>Vegan: Community Ecology Package</em> (Version 2.5-6) [Software]. [https://CRAN.R-project.org/package=vegan]</p>
<p>Panero, J. & Funk, V.A. (2002) Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae). <em>Proceedings of the Biological Society of Washington</em> 115 (4): 909–922.</p>
<p>Peruzzi, L., Bedini, G. & Andreucci, A. (2011) Homoploid hybrid speciation in <em>Doronicum</em> L. (Asteraceae)? Morphological, karyological and molecular evidences. <em>Plant Biosystems</em> 146 (4): 867–877. https://doi.org/10.1080/11263504.2011.634445</p>
<p>Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. <em>Ecological Modelling</em> 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026</p>
<p>Pliszko, A. & Kostrakiewicz-Gieralt, K. (2018) The morphological intermediacy of <em>Erigeron</em> × <em>huelsenii</em> (Asteraceae), a hybrid between <em>E. acris</em> and <em>E. canadensis</em>. <em>Turkish Journal of Botany</em> 42: 543–550. https://doi.org/10.3906/bot-1711-27</p>
<p>Pozo, P. & Hind, D.J.N. (2013) A new species of <em>Calea</em> sect. <em>Meyeria</em> (Compositae: Heliantheae: Neurolaeninae). <em>Calea woodi</em>, from Santa Cruz, Bolivia. <em>Kew Bulletin</em> 68: 1–5. https://doi.org/10.1007/s12225-013-9463-z</p>
<p>Pruski, J.F. & Hind, D.J.N. (1998) Two new species of <em>Calea</em> (Compositae: Heliantheae) from Serra do Grão Mogol and Vicinity, Minas Gerais, Brazil. <em>Kew Bulletin</em> 53: 695–701. https://doi.org/10.2307/4110488</p>
<p>Pruski, J.F. & Robinson, H.E. (2018) Asteraceae <em>In</em>: Davidse, G., Sánchez, M.S., Knapp, S. & Cabrera, F.C. (Eds.) <em>Flora Mesoamericana.</em> Missouri Botanical Garden, Saint Louis, pp. 1–608.</p>
<p>Pruski, J.F. & Urbastch, L.E. (1988) Five new species of <em>Calea</em> (Compositae: Heliantheae) from Planaltine Brazil. <em>Brittonia</em> 40: 341–356. https://doi.org/10.2307/2807644</p>
<p>Pruski, J.F. & Urbatsch, L.E. (1987) <em>Calea dalyi</em> (Compositae: Heliantheae), a new species from the Serranía de Santiago, Bolivia. <em>Brittonia</em> 39: 201–204. https://doi.org/10.2307/2807375</p>
<p>Pruski, J.F. (1983) <em>Calea bucaramagensis</em> (Asteraceae), a new species from the Colombian Andes. <em>Systematic Botany</em> 8 (1): 93–95. https://doi.org/10.2307/2418567</p>
<p>Pruski, J.F. (1984) <em>Calea brittoniana</em> and <em>Calea kristiniae</em>: Two New Compositae from Brazil. <em>Brittonia</em> 36: 98–103. https://doi.org/10.2307/2806617</p>
<p>Pruski, J.F. (1997) <em>Calea</em> L. <em>In</em>: Steyermark, J.A., Berry, P.E. & Holst, B.K. (Eds.)<em> Flora of the Venezuelan Guayana.</em> Missouri Botanical Garden, St. Louis, pp. 221–236.</p>
<p>Pruski, J.F. (1998) Novelties in <em>Calea </em>(Compositae: Heliantheae) from South America. <em>Kew Bulletin</em> 53: 683–693. https://doi.org/10.2307/4110487</p>
<p>Pruski, J.F. (2005) Studies of Neotropical Compositae–I. Novelties in <em>Calea</em>, <em>Clibadium</em>, <em>Conyza</em>, <em>Llerasia</em>, and <em>Pluchea</em>. <em>Sida</em> 21: 2023–2037.</p>
<p>Pruski, J.F. (2011) Compositae of the Guayana Highland–XIV. Four new species of Calea (Neurolaeneae) from Tepui summits in Venezuela. <em>Phytoneuron </em>52: 1–9.</p>
<p>Pruski, J.F. (2013) Studies of Neotropical Compositae–IX. Four new species of <em>Calea</em> (Neurolaeneae) from Bolivia, Brazil and Paraguay. <em>Phytoneuron</em> 72: 1–4.</p>
<p>QGIS Development Team (2015) <em>QGIS Geographic Information System, Open Source Geospatial Foundation Project</em>. Available from: http://qgis.osgeo.org (accessed 10 December 2020)</p>
<p>R Core Team (2022) <em>R: A language and environment for statistical computing</em>. R Foundation for Statistical Computing, Vienna, Austria. [https://www.R-project.org/]</p>
<p>Reis-Silva, G.A. & Nakajima, J.N. (2020) A new species of <em>Calea </em>(Neurolaeneae, Asteraceae) from the Espinhaço Range, Minas Gerais, Brazil. <em>Phytotaxa</em> 432 (2): 199–205. https://doi.org/10.11646/phytotaxa.432.2.9</p>
<p>Reis-Silva, G.A. & Nakajima, J.N. (2021) A new species of <em>Calea </em>(Neurolaeneae, Asteraceae) from the Atlantic Forest, Minas Gerais, southeastern Brazil. <em>Phytotaxa</em> 490 (1): 129–136. https://doi.org/10.11646/phytotaxa.494.1.9</p>
<p>Reis-Silva, G.A. (2019) <em>The Genera Calea L. (Neurolaeneae, Asteraceae) in Minas Gerais. Brazil. </em>Universidade Federal de Viçosa, Viçosa, 181 pp.</p>
<p>Robinson, H. (1975) Studies in the Heliantheae (Asteraceae). VI. Aditions to the genus <em>Calea</em>. <em>Phytologia</em> 32 (5): 426–430.</p>
<p>Robinson, H. (1979) Studies in the Heliantheae (Asteraceae). XIX. Four new species of<em> Calea</em> from Brasil. <em>Phytologia</em> 44 (4): 270–276.</p>
<p>Roque, N. & Carvalho, V.C. (2011) Estudos taxonômicos do gênero <em>Calea</em> (Asteraceae, Neurolaeneae) no estado da Bahia, Brasil. <em>Rodriguésia</em> 62: 547–561. https://doi.org/10.1590/2175-7860201162308</p>
<p>Roque, N., Reis-Silva, G.A., Silva, G.H.L. & Bueno, V.R. (2022) <em>Calea in</em> Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Available from: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB103751 (acessed 13 January 2022)</p>
<p>Rydberg, A. (1927) (Carduales) Carduaceae, Liabeae, Neurolaeneae, Senecioneae. <em>New York Botanical Garden </em>34 (4): 289–360.</p>
<p>Safford, H.D. (2001) Brazilian Páramos. III. Patterns and rates of postfire regeneration in the Campos de Altitude. <em>Biotropica</em> 33 (2): 282–302. https://doi.org/10.1111/j.1744-7429.2001.tb00179.x</p>
<p>Schilling, E.E. (2011) Hybrid genera in Liatrinae (Asteraceae: Eupatorieae). <em>Molecular Phylogenetics and Evolution</em> 59: 158–167. https://doi.org/10.1016/j.ympev.2011.01.011</p>
<p>Semíz, G., Şenol, S.G., Günal, B., Çiçek, M. & Eroğlu, V. (2021) <em>Helichysum ×kani-isikii</em> (Asteraceae), a new nothospecies from Turkey. <em>Phytotaxa</em> 507 (4): 283–292. https://doi.org/10.11646/phytotaxa.507.4.2</p>
<p>Semple, J.C. (2016) Documenting a <em>Solidago bicolor</em> × <em>S. brendiae</em> hybrid (Asteraceae: Astereae) from Nova Scotia. <em>Phytoneuron</em> 2016 (23): 1–10.</p>
<p>Shipunov, A., Gladkova, S., Timoshina, P., Lee, H.-J., Choi, J.-H., Despiegelaere, S. & Connolly, B. (2019) Mysterious chokeberries: new data on the diversity and phylogeny of <em>Aronia </em>Medik. (Rosaceae). <em>European Journal of Taxonomy</em> 570: 1–14. https://doi.org/10.5852/ejt.2019.570</p>
<p>Silva, G.H.L. (2016) <em>Estudos</em> <em>Taxonômicos do Gênero Calea L. (Asteraceae: Neurolaeneae) na região Centro-Oeste do Brasil</em>. Universidade Federal de Goiás, Goiânia, 165 pp.</p>
<p>Silva, G.H.L., Bringel, J.B. & Teles, A.M. (2016) A new species of <em>Calea</em> (Asteraceae–Neurolaneae) from Goiás State, Brazil. <em>Phytotaxa</em> 265 (3): 279–284. https://doi.org/10.11646/phytotaxa.265.3.9</p>
<p>Simon, M.F., Grether, R., Queiroz, L.P., Skema, C., Pennington, R.T. & Hugues, C.E. (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. <em>Proceeding of the National Academy of Sciences</em> 106 (48): 20359–20364. https://doi.org/10.1073/pnas.0903410106</p>
<p>Smissen, R.D., Thorsen, M.J., Breitwieser, I. & Ward, J.M. (2015) DNA sequence analysis confirms the identity of the intergeneric hybrid <em>Argyrotegium mackayi</em> × <em>Leucogenes leontopodium</em> (Asteraceae, Gnaphalieae). <em>New Zealand Journal of Botany</em> 53 (4): 210–215. https://doi.org/10.1080/0028825X.2015.1093000</p>
<p>Smith, G.F. & Figueiredo, E. (2020) × <em>Bacurio</em>, a new nothogenus for the hybrid × <em>B. delphinatifolius</em> (<em>Baculellum articulatum</em> × <em>Curio rowleyanus</em>), with notes on the nomenclature of <em>Kleinia</em> × <em>peregrina</em>, <em>Senecio peregrinus</em>, <em>S</em>. × <em>peregrinus</em>, and <em>Curio</em> × <em>peregrinus</em> (Asteraceae: Asteroideae: Senecioneae). <em>Phytotaxa</em> 458 (1): 1–28. https://doi.org/10.11646/phytotaxa.458.1.8</p>
<p>Soltis, P.S. & Soltis, D.E. (2009) The role of hybridization in plant speciation. <em>Annual Review Plant Biology</em> 60: 561–588. https://doi.org/10.1146/annurev.arplant.043008.092039</p>
<p>Susanna, A., Baldwin, B.G., Bayer, R.J., Bonifacino, J.M., Garcia-Jacas, N., Keeley, S.C., Mandel, J.R., Ortiz, S., Robinson, H. & Stuessy, T.F. (2020) The classification of the Compositae: A tribute to Vicki Ann Funk (1947–2019). <em>Taxon</em> 69: 807–814. https://doi.org/10.1002/tax.12235</p>
<p>Thiers, B. (2022) [continuously updated] <em>Index Herbariorum: A global directory of public herbaria and associated staff. </em>New York Botanical Garden’s Virtual Herbarium, New York U.S.A. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 17 Jan 2022)</p>
<p>Turner, B.L. (1982) Taxonomy of <em>Neurolaena</em> (Asteraceae-Heliantheae). <em>Plant Systematics and Evolution</em> 140: 119–139. https://doi.org/10.1007/BF02407293</p>
<p>Turner, B.L. (2014) The comps of Mexico, A systematic account of the family Asteraceae, Chapter 14, Tribe: Neurolaeneae. Tribe: Heliantheae: subtribes: Ambrosiinae, Chromolepidinae and Dugesiinae. <em>Phytologia Memoirs</em> 19: 1–21.</p>
<p>Urbatsch, L.E., Zlotsky, A. & Pruski, J.F. (1986) Revision of <em>Calea</em> sect. <em>Lemmatium</em> (Asteraceae: Heliantheae) from Brazil. <em>Systematic Botany</em> 11 (4): 501–514. https://doi.org/10.2307/2419029</p>
<p>Wang, J. & Wang, J. (2018) Emerging natural hybrid between Invasive Species and Native Congener of Emilia (Asteraceae) Found in Northern Taiwan. <em>Phytotaxa</em> 382 (2): 204–212. https://doi.org/10.11646/phytotaxa.382.2</p>
<p>Wang, Z., Du, S., Dayanandan, S., Wang, D., Zeng, Y. & Zhang, J. (2014) Phylogeny Reconstruction and Hybrid Analysis of <em>Populus</em> (Salicaceae) Based on Nucleotide Sequences of Multiple Single-Copy Nuclear Genes and Plastid Fragments. <em>PLOS One </em>9 (8): e103645. https://doi.org/10.1371/journal.pone.0103645</p>
<p>Wickham, H., Chang, W., Henry, L., Pedersen, T.L., Takahashi, K., Wilke, C., Woo, K., Yutani, H. & Dunnington, D. (2020) <em>RStudio. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics</em> (Version 3.3.0). [https://cran.r-project.org/web/packages/ggplot2/index.html]</p>
<p>Wussow, J.R., Urbatsch, L.E. & Sullivan, G.A. (1985) <em>Calea</em> (Asteraceae) in Mexico, Central America and Jamaica. <em>Systematic Botany</em> 10 (3): 241–267. https://doi.org/10.2307/2418590</p>
<p>Xaxars, G.M., Fridlender, A., Garnatje, T. & Valles, J. (2015) Molecular and cytogenetic confirmation of the hybrid origin of <em>Jacobaea</em> × <em>mirabilis</em> (Asteraceae, Senecioneae), with nomenclatural notes on this name. <em>Phytologia</em> 234 (3): 271–279. https://doi.org/10.11646/phytotaxa.234.3.8</p>
<p>Yu, J., Kuroda, C. & Gong, X. (2014) Natural hybridization and introgression between <em>Ligularia cymbulifera</em> and <em>L. tongolensis</em> (Asteraceae, Senecioneae) in four different locations. <em>PLoS One</em> 9 (12): e115167. https://doi.org/10.1371/journal.pone.0115167</p>
<p>Zhang, R., Gong, X. & Folk, R. (2017) Evidence for continual hybridization rather than hybrid speciation between <em>Ligularia duciformis</em> and <em>L. paradoxa</em> (Asteraceae). <em>PeerJ </em>5: e3884. https://doi.org/10.7717/peerj.3884</p>