Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-08-25
Page range: 238-246
Abstract views: 400
PDF downloaded: 320

Paecilomyces clematidis (Eurotiales, Thermoascaceae): a new species from Clematis root

Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas—Universidad de la Rioja—Gobierno de La Rioja, Ctra. de Burgos km. 6, 26007 Logroño, Spain
Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B. P 92 16308 Vieux-Kouba, Alger, Algeria; Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, 47000 Ghardaïa, Algeria
Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Department of Breeding and Propagation of Horticultural Plants, Mendel University in Brno, Valtická 334, 691 44, Lednice na Moravě, Czech Republic
Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Calmodulin Fungi Phylogeny Primers Taxonomy

Abstract

During a survey of endophytic fungi associated with ornamental plants in the Czech Republic, Paecilomyces-like strains were isolated from the root of Clematis. Analyses based on a combined internal transcribed spacer region (ITS), beta-tubulin (tub2) and calmodulin (CaM) sequence data matrix were applied to infer the phylogenetic position of these isolates. The novel species is characterized by phialides with a cylindrical basal portion tapering to a thin long neck producing pyriform conidia in chains. The new species is introduced with comprehensive descriptions, illustrations and a phylogenetic tree herein. Two primer pairs targeting the partial CaM gene, cm1F/cm1R and cm2F/cm2R, were designed in this study.

References

Bainier, G. (1907) Mycothèque de l’école de Pharmacie. XI Paecilomyces, genre nouveau de Mucédinées. Bulletin de la Société mycologique de France 23: 26–27.

Beuchat, L.R. & Rice, S.L. (1979) Byssochlamys spp. and processed fruits. Advances in Food Research 25: 237–288.

van den Brule, T., Punt, M., Teertstra, W., Houbraken, J., Wösten, H. & Dijksterhuis, J. (2020) The most heat-resistant conidia observed to date are formed by distinct strains of Paecilomyces variotii. Environmental Microbiology 22: 986–999. https://doi.org/10.1111/1462-2920.14791

Carbone, I. & Kohn, L.M. (1999) A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. Mycologia 91: 553–556. https://doi.org/10.2307/3761358

Crous, P.W., Wingfield, M.J., Richardson, D.M., Leroux, J.J., Strasberg, D., Edwards, J., Roets, F., Hubka, V., Taylor, P.W.J., Heykoop, M. & Martín, M.P. (2016) Fungal Planet description sheets: 400-468. Persoonia 36: 316–458. https://doi.org/10.3767/003158516X692185

Glass, N.L. & Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.

Hong, S.B., Cho, H.S., Shin, H.D., Frisvad, J.C. & Samson, R.A. (2006) Novel Neosartorya species isolated from soil in Korea. International journal of systematic and evolutionary microbiology 56: 477–486. https://doi.org/10.1099/ijs.0.63980-0

Houbraken, J., Samson, R.A. & Frisvad, J.C. (2006) Byssochlamys: significance of heat resistance and mycotoxin production. Advances in Experimental Medicine and Biology: 571. Springer, Boston, MA. https://doi.org/10.1007/0-387-28391-9_14

Houbraken, J., Varga, J., Rico-Munoz, E., Johnson, S. & Samson, R.A. (2008) Sexual reproduction as the cause of heat resistance in the food spoilage fungus Byssochlamys spectabilis (anamorph Paecilomyces variotii). Applied and environmental microbiology 74: 1613–1619. https://doi.org/10.1128/AEM.01761-07

Houbraken, J., Spierenburg, H. & Frisvad, J.C. (2012) Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie van Leeuwenhoek 101: 403–421. https://doi.org/10.1007/s10482-011-9647-1

Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, X., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A. & Frisvad, J.C. (2020) Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology 95: 5–169.

Hull, R. (1939) Study of Byssochlamys fulva and control measures in processed fruits. Annals of Applied Biology 26: 800–822.

Jensen, A.B., Aronstein, K., Flores, J.M., Vojvodic, S., Palacio, M.A. & Spivak, M. (2013) Standard methods for fungal brood disease research. Journal of apicultural research 52 (1): 1–20. https://doi.org/10.3896/IBRA.1.52.1.13

Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096

Kramer, R.K., Davis, N.D. & Diener, U.L. (1976) Byssotoxin A, a secondary metabolite of Byssochlamys fulva. Applied and Environmental Microbiology 31: 249–253.

Luangsa-Ard, J.J., Hywel-Jones, N.L. & Samson, R.A. (2004) The polyphyletic nature of Paecilomyces sensu lato based on 18S-generated rDNA phylogeny. Mycologia 96: 773–780. https://doi.org/10.1080/15572536.2005.11832925

Mori, T., Shin-ya, K., Takatori, K., Aihara, M. & Hayakawa, Y. (2003) Byssochlamysol, a new antitumor steroid against IGF-1-dependent cells from Byssochlamys nivea, II Physico-chemical properties and structure elucidation. Journal of Antibiotics 56: 6–8.

Phukhamsakda, C., McKenzie, E.H., Phillips, A.J.L, Gareth Jones, E.B., Jayarama Bhat, D., Stadler, M., Bhunjun, C.S., Wanasinghe, D.N., Thongbai, B., Camporesi, E. & Ertz, D. (2020) Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102: 1–203. https://doi.org/10.1007/s13225-020-00448-4

Rayner, A.J. (1970) The demand for inputs and the aggregate supply function for agriculture. Journal of Agricultural Economics 21: 225–238. https://doi.org/10.1111/j.1477-9552.1970.tb02033.x

Rehner, S.A. & Samuels, G.J. (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634.

Rice, S.L. (1977) Polygalacturonase, biomass, ascospore, and patulin production of Byssochhmys fulva. Ph.D. Dissertation, University of Georgia, Athens.

Samson, R.A., Hoekstra, E.S. & Frisvad, J.C. (2000) Introduction to food- and airborne fungi. 6th rev. ed. Utrecht: Centraalbureau voor schimmelcultures.

Spetik, M., Berraf-Tebbal, A., Penazova, E., Pecenka, J., Maier, M. & Eichmeier, A. (2019) First Report of Pseudonectria buxi Causing Volutella Blight on Boxwood in Czech Republic. Plant Disease 103 (7): 1790. https://doi.org/10.1094/PDIS-02-19-0258-PDN

Spetik, M., Berraf-Tebbal, A., Pokluda, R. & Eichmeier, A. (2021) Pyrenochaetopsis kuksensis (Pyrenochaetopsidaceae), a new species associated with an ornamental boxwood in the Czech Republic. Phytotaxa 498 (3): 177–185. https://doi.org/10.11646/phytotaxa.498.3

Splittstoesser, D.F. (1987) Fruits and fruit products. In: Beuchat, L.R. (ed.) Food and Beverage Mycology. AVI Van Nostrand Reinhold, New York, pp. 101–122.

Stolk, A.C. & Samson, R.A. (1971) Studies on Talaromyces and related genera I. Hamigera gen. nov. and Byssochlamys. Persoonia - Molecular Phylogeny and Evolution of Fungi 6: 341–357.

Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.

Vu, T., Groenewald, M., Vries, M.,Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J.Z. Cardinali, G., Houbraken, J., Boekhout, T., Crous, P., Robert, V. & Verkley, G.J.M. (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 91: 23–36. https://doi.org/10.1016/j.simyco.2018.05.001

Westling, R. (1909) Byssochlamys nivea, en foreningslank mellam familjerna Gymnoascaceae och Endomycetaceae. Svensk Botanisk Tidskrift 3: 125–137.

How to Cite

Spetik, M., Berraf-Tebbal, A., Gramaje, D., Eddine Mahamedi, A., Stusková, K., Burgova, J. & Eichmeier, A. (2022)

Paecilomyces clematidis (Eurotiales, Thermoascaceae): a new species from Clematis root

. Phytotaxa 559 (3): 238–246. https://doi.org/10.11646/phytotaxa.559.3.2