Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-08-25
Page range: 238-246
Abstract views: 162
PDF downloaded: 82

Paecilomyces clematidis (Eurotiales, Thermoascaceae): a new species from Clematis root

Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas—Universidad de la Rioja—Gobierno de La Rioja, Ctra. de Burgos km. 6, 26007 Logroño, Spain
Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B. P 92 16308 Vieux-Kouba, Alger, Algeria; Département de Biologie, Faculté des Sciences de la Nature et de la Vie et Sciences de la Terre, Université de Ghardaia, 47000 Ghardaïa, Algeria
Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Department of Breeding and Propagation of Horticultural Plants, Mendel University in Brno, Valtická 334, 691 44, Lednice na Moravě, Czech Republic
Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Valtická 334, 691 44 Lednice, Czech Republic
Calmodulin Fungi Phylogeny Primers Taxonomy

Abstract

During a survey of endophytic fungi associated with ornamental plants in the Czech Republic, Paecilomyces-like strains were isolated from the root of Clematis. Analyses based on a combined internal transcribed spacer region (ITS), beta-tubulin (tub2) and calmodulin (CaM) sequence data matrix were applied to infer the phylogenetic position of these isolates. The novel species is characterized by phialides with a cylindrical basal portion tapering to a thin long neck producing pyriform conidia in chains. The new species is introduced with comprehensive descriptions, illustrations and a phylogenetic tree herein. Two primer pairs targeting the partial CaM gene, cm1F/cm1R and cm2F/cm2R, were designed in this study.

References

<p>Bainier, G. (1907) Mycothèque de l’école de Pharmacie. XI <em>Paecilomyces</em>, genre nouveau de Mucédinées. <em>Bulletin de la Société mycologique de France</em>&nbsp;23: 26–27.</p>
<p>Beuchat, L.R. &amp; Rice, S.L. (1979) <em>Byssochlamys</em> spp. and processed fruits. <em>Advances in Food Research</em> 25: 237–288.</p>
<p>van den Brule, T., Punt, M., Teertstra, W., Houbraken, J., Wösten, H. &amp; Dijksterhuis, J. (2020) The most heat-resistant conidia observed to date are formed by distinct strains of&nbsp;<em>Paecilomyces variotii</em>. <em>Environmental Microbiology</em> 22: 986–999.&nbsp; https://doi.org/10.1111/1462-2920.14791</p>
<p>Carbone, I. &amp; Kohn, L.M. (1999) A Method for Designing Primer Sets for Speciation Studies in Filamentous <em>Ascomycetes</em>.&nbsp;<em>Mycologia</em>&nbsp;91: 553–556. https://doi.org/10.2307/3761358</p>
<p>Crous, P.W., Wingfield, M.J., Richardson, D.M., Leroux, J.J., Strasberg, D., Edwards, J., Roets, F., Hubka, V., Taylor, P.W.J., Heykoop, M. &amp; Martín, M.P. (2016) Fungal Planet description sheets: 400-468.&nbsp;<em>Persoonia</em>&nbsp;36: 316–458.&nbsp; https://doi.org/10.3767/003158516X692185</p>
<p>Glass, N.L. &amp; Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous <em>Ascomycetes</em>. <em>Applied and Environmental Microbiology</em> 61: 1323–1330.</p>
<p>Hong, S.B., Cho, H.S., Shin, H.D., Frisvad, J.C. &amp; Samson, R.A. (2006) Novel <em>Neosartorya</em> species isolated from soil in Korea.&nbsp;<em>International journal of systematic and evolutionary microbiology</em>&nbsp;56: 477–486.&nbsp; https://doi.org/10.1099/ijs.0.63980-0</p>
<p>Houbraken, J., Samson, R.A. &amp; Frisvad, J.C. (2006)&nbsp;<em>Byssochlamys</em>: significance of heat resistance and mycotoxin production. <em>Advances in Experimental Medicine and Biology</em>: 571. Springer, Boston, MA.&nbsp; https://doi.org/10.1007/0-387-28391-9_14</p>
<p>Houbraken, J., Varga, J., Rico-Munoz, E., Johnson, S. &amp; Samson, R.A. (2008) Sexual reproduction as the cause of heat resistance in the food spoilage fungus <em>Byssochlamys</em> <em>spectabilis</em> (anamorph <em>Paecilomyces variotii</em>).&nbsp;<em>Applied and environmental microbiology</em>&nbsp;74: 1613–1619. https://doi.org/10.1128/AEM.01761-07</p>
<p>Houbraken, J., Spierenburg, H. &amp; Frisvad, J.C. (2012) <em>Rasamsonia</em>, a new genus comprising thermotolerant and thermophilic <em>Talaromyces</em> and <em>Geosmithia</em> species.&nbsp;<em>Antonie van Leeuwenhoek</em>&nbsp;101: 403–421.&nbsp; https://doi.org/10.1007/s10482-011-9647-1</p>
<p>Houbraken, J., Kocsubé, S., Visagie, C.M., Yilmaz, N., Wang, X., Meijer, M., Kraak, B., Hubka, V., Bensch, K., Samson, R.A. &amp; Frisvad, J.C. (2020) Classification of <em>Aspergillus, Penicillium, Talaromyces</em> and related genera (<em>Eurotiales</em>): An overview of families, genera, subgenera, sections, series and species.&nbsp;<em>Studies in Mycology </em>95: 5–169.</p>
<p>Hull, R. (1939) Study of <em>Byssochlamys fulva</em> and control measures in processed fruits. <em>Annals of Applied Biology</em> 26: 800–822.</p>
<p>Jensen, A.B., Aronstein, K., Flores, J.M., Vojvodic, S., Palacio, M.A. &amp; Spivak, M. (2013) Standard methods for fungal brood disease research. <em>Journal of apicultural research</em> 52 (1): 1–20.&nbsp; https://doi.org/10.3896/IBRA.1.52.1.13</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Brief Bioinform</em> 20 (4): 1160–1166.&nbsp; https://doi.org/10.1093/bib/bbx108</p>
<p>Kumar, S., Stecher, G., Li, M., Knyaz, C. &amp; Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. <em>Molecular Biology and Evolution</em> 35: 1547–1549.&nbsp; https://doi.org/10.1093/molbev/msy096</p>
<p>Kramer, R.K., Davis, N.D. &amp; Diener, U.L. (1976) Byssotoxin A, a secondary metabolite of <em>Byssochlamys fulva. Applied and Environmental Microbiology </em>31: 249–253.</p>
<p>Luangsa-Ard, J.J., Hywel-Jones, N.L. &amp; Samson, R.A. (2004) The polyphyletic nature of <em>Paecilomyces sensu lato</em> based on 18S-generated rDNA phylogeny. <em>Mycologia</em> 96: 773–780.&nbsp; https://doi.org/10.1080/15572536.2005.11832925</p>
<p>Mori, T., Shin-ya, K., Takatori, K., Aihara, M. &amp; Hayakawa, Y. (2003) Byssochlamysol, a new antitumor steroid against IGF-1-dependent cells from <em>Byssochlamys nivea</em>, II Physico-chemical properties and structure elucidation. <em>Journal of Antibiotics</em> 56: 6–8.</p>
<p>Phukhamsakda, C., McKenzie, E.H., Phillips, A.J.L, Gareth Jones, E.B., Jayarama Bhat, D., Stadler, M., Bhunjun, C.S., Wanasinghe, D.N., Thongbai, B., Camporesi, E. &amp; Ertz, D. (2020) Microfungi associated with <em>Clematis </em>(<em>Ranunculaceae</em>) with an integrated approach to delimiting species boundaries. <em>Fungal Diversity</em> 102: 1–203.&nbsp; https://doi.org/10.1007/s13225-020-00448-4</p>
<p>Rayner, A.J. (1970) The demand for inputs and the aggregate supply function for agriculture. <em>Journal of Agricultural Economics</em> 21: 225–238.&nbsp; https://doi.org/10.1111/j.1477-9552.1970.tb02033.x</p>
<p>Rehner, S.A. &amp; Samuels, G.J. (1994) Taxonomy and phylogeny of&nbsp;<em>Gliocladium</em>&nbsp;analysed from nuclear large subunit ribosomal DNA sequences.&nbsp;<em>Mycological Research</em> 98: 625–634.</p>
<p>Rice, S.L. (1977) Polygalacturonase, biomass, ascospore, and patulin production of <em>Byssochhmys fulva. </em>Ph.D. Dissertation, University of Georgia, Athens.</p>
<p>Samson, R.A., Hoekstra, E.S. &amp; Frisvad, J.C. (2000)&nbsp;<em>Introduction to food- and airborne fungi.</em>&nbsp;6th rev. ed. Utrecht: Centraalbureau voor schimmelcultures.</p>
<p>Spetik, M., Berraf-Tebbal, A., Penazova, E., Pecenka, J., Maier, M. &amp; Eichmeier, A. (2019) First Report of Pseudonectria buxi Causing Volutella Blight on Boxwood in Czech Republic. <em>Plant Disease </em>103 (7): 1790.&nbsp; https://doi.org/10.1094/PDIS-02-19-0258-PDN</p>
<p>Spetik, M., Berraf-Tebbal, A., Pokluda, R. &amp; Eichmeier, A. (2021) <em>Pyrenochaetopsis kuksensis</em><strong> (</strong><em>Pyrenochaetopsidaceae</em><strong>),</strong> a new species associated with an ornamental boxwood in the Czech Republic. <em>Phytotaxa</em> 498 (3): 177–185.&nbsp; https://doi.org/10.11646/phytotaxa.498.3</p>
<p>Splittstoesser, D.F. (1987) Fruits and fruit products. <em>In</em>: Beuchat, L.R. (ed.) <em>Food and Beverage Mycology</em>. AVI Van Nostrand Reinhold, New York, pp. 101–122.</p>
<p>Stolk, A.C. &amp; Samson, R.A. (1971) Studies on <em>Talaromyces </em>and related genera I. <em>Hamigera</em> gen. nov. and <em>Byssochlamys. Persoonia - Molecular Phylogeny and Evolution of Fungi</em> 6: 341–357.</p>
<p>Vilgalys, R. &amp; Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several <em>Cryptococcus</em> species. <em>Journal of Bacteriology</em> 172: 4238–4246.</p>
<p>Vu, T., Groenewald, M., Vries, M.,Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J.Z. Cardinali, G., Houbraken, J., Boekhout, T., Crous, P., Robert, V. &amp; Verkley, G.J.M. (2018) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom <em>Fungi</em> and reveals thresholds for fungal species and higher taxon delimitation. <em>Studies in Mycology</em> 91: 23–36. https://doi.org/10.1016/j.simyco.2018.05.001</p>
<p>Westling, R. (1909) <em>Byssochlamys nivea</em>, en foreningslank mellam familjerna <em>Gymnoascaceae </em>och<em> Endomycetaceae</em>. <em>Svensk Botanisk Tidskrift</em> 3: 125–137.</p>