Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-08-23
Page range: 157-166
Abstract views: 37
PDF downloaded: 3

Molecular investigation of the intra-specific genetic variation in Plantago ovata Forssk. (Plantaginaceae): An insight into potential ancestral area distribution and probable time of dispersal versus vicariance events

Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
Dispersal Genetic diversity Molecular markers Taxonomy Plantago ovata Eudicots

Abstract

Plantago ovata (Plantaginaceae) is a medicinal plant cultivated extensively in Western Asia for seed husk known as blonde Psyllium or Isabgol. Taxonomy of P. ovata is controversial at both species level and variety recognition for both the Old and New World. There has been no infra-specific rank recognition for P. ovata in Iran. Therefore, we attempted to recognize the variety of P. ovata of Iran for the first time by using both morphological and molecular data. We used internal transcribed spacerregion (ITS) to estimate the level of genetic variability in P. ovata and also suggest the potential ancestral area of distribution and provide the probable time for P. ovata dispersal. We identified P. ovata variety decumbens as the P. ovata plant growing in Iran. Data obtained separated Asian Plantago plant samples from African and North American plants, due to sequence divergence. We obtained the time of the divergence for these two groups to be around 5 M years ago and RASP analysis revealed that Iran is the probable ancestral area for the occurrence of Asian Plantago.

References

<p>Asaf, S., Khan, A.L., Khan, A., Khan, A., Khan, G., Lee, I, J.&amp; Al-Harrasi, A. (2020) Expanded inverted repeat region with large scale inversion in the first complete plastid genome sequence of <em>Plantago ovata</em>. <em>Scientific Reports </em>10: 3881.&nbsp; https://doi.org/10.1038/s41598-020-60803-y</p>
<p>Afshar, F., Sheidai, M., Talebi, S.M.&amp;Keshavarzi, M. (2015) Bayesian and Multivariate Analyses of combined molecular and morphological data in <em>Linum austriacum</em> (Linaceae) populations: Evidence for infraspecific taxonomic groups. <em>Biodiversitas</em> 16 (2): 179–187.&nbsp; https://doi.org/10.13057/biodiv/d160213</p>
<p>Bassett, I.J.&amp; Baum, B.R. (1969) Conspecificity of <em>Plantago fastigiata</em> of North America with <em>P. ovata</em> of the Old World. <em>Canadian Journal of Botany </em>47: 1865–1868.&nbsp; https://doi.org/10.1139/b69-273</p>
<p>Dhar, M.K., Kaul, S., Sareen, S.&amp;Koul, A.K. (2005) <em>Plantago ovata</em>: genetic diversity, cultivation, utilization and chemistry. <em>Plant Genetic Resources</em> 3 (2): 252–263.&nbsp; https://doi.org/10.1079/PGR200582</p>
<p>Drummond, A.J., Rambaut, A. &amp; Xie, W. (2010a) BEAUti (version 1.6.1) [computer program]. Available from: http://beast.bio.ed.ac.uk (accessed 22 August 2022)</p>
<p>Drummond, A.J., Rambaut, A. &amp; Suchard, M.A. (2010b) BEAST (version 1.6.1) [computer program].Available from: http://beast.bio.ed.ac.uk (accessed 22 August 2022)</p>
<p>Goncalves, S. &amp; Romano, A. (2016) The medicinal potential of plants from the genus <em>Plantago</em> (Plantaginaceae). <em>Industrial Crops and Products</em> 83: 213–226.&nbsp; https://doi.org/10.1016/j.indcrop.2015.12.038</p>
<p>Hong, S.W.P. &amp; Jury, S.L. (2011) Phylogeny and divergence times inferred from rps16 sequence data analyses for <em>Tricyrtis</em> (Liliaceae), and endemic genus of north-east Asia. <em>AoB Plants</em> 2011: plr025.&nbsp; https://doi.org/10.1093/aobpla/plr025</p>
<p>Joy, J.B., Liang, R.H., McCloskey, R.M., Nguyen, T. &amp; Poon, A.F.Y. (2016) Ancestral Reconstruction. <em>PLOS Computational Biology </em>12 (7): e1004763.&nbsp; https://doi.org/10.1371/journal.pcbi.1004763</p>
<p>Kazmi, M.A. (1974) Plantaginaceae.<em> In: </em>Nasir, E. &amp; Ali, S.I. (Eds.) <em>Flora of Pakistan.</em> No. 62. Islamabad. pp. 1–21</p>
<p>Kotwal, S., Dhar, M.K., Kour, B., Raj, K. &amp;Kaul, S. (2013) Molecular markers unravel intraspecific and interspecific genetic variability in <em>Plantago ovata</em> and some of its wild allies. <em>Journal of Genetics </em>92: 293–298.&nbsp; https://doi.org/10.1007/s12041-013-0240-4</p>
<p>Kour, B., Kotwal, S., Dhar, M.K. &amp;Kaul, S. (2016) Genetic diversity analysis in <em>Plantago ovata</em> and some of its wild allies using RAPD markers. <em>Russian Agricultural Sciences </em>42 (1): 37–41.&nbsp; https://doi.org/10.3103/S1068367416010055</p>
<p>Križman, M., Jakše, J., Baričevič, D., Javornik, B. &amp; Prošek, M. (2006) Robust CTAB-activated charcoal protocol for plant DNA extraction. <em>Acta agriculturae Slovenica </em>87 (2): 427–433</p>
<p>Kumar, S., Stecher, G.K. &amp; Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets<em>. Molecular Biology and Evolution </em>33 (7): 1870–1874.&nbsp; https://doi.org/10.1093/molbev/msw054</p>
<p>Miguel, A. (2015) Trends in substitution models of molecular evolution. <em>Frontiers in Genetics</em> 6: 00319.&nbsp; https://doi.org/10.3389/fgene.2015.00319</p>
<p>Meyers, S.C. &amp; Liston, A. (2008) The biogeography of <em>Plantago ovata</em> Forssk. (Plantaginaceae). <em>International Journal of Plant Sciences </em>69 (7): 954–962.&nbsp; https://doi.org/10.1086/589699</p>
<p>Mosaferi, S., Sheidai, M., Keshavarzi, M. &amp;Noormoammdi, Z. (2015) Genetic diversity and morphological variability in <em>Polygonum aviculare</em> s.l. (Polygonaceae) of Iran. <em>Phytotaxa</em> 233 (2): 166–178.&nbsp; https://doi.org/10.11646/phytotaxa.233.2.4</p>
<p>O’Dell, R.E.&amp;Rajakaruna, N. (2011) Intraspecific Variation, Adaptation, and Evolution. <em>In:</em> Harrison, S. (ed.) <em>Serpentine: The Evolution and Ecology of a Model System.</em> University of California Press. pp. 96–137. https://doi.org/10.1525/california/9780520268357.003.0005</p>
<p>Patzak, A. &amp; Rechinger, K.H. (1965) Plantaginaceae. <em>In:</em> Rechinger, K.H. (ed.) <em>Flora Iranica</em> 15. Graz:Academische Druck und Verlagsantalt. pp. 1–21.</p>
<p>Rambaut, A. &amp; Drummond, A.J. (2007) Tracer, version 1.5. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 22 August 2022)</p>
<p>Rambaut, A. (2009) FigTree (v1.3.1) [computer program]. Available from: http://tree.bio.ed.ac.uk/software/figtree (accessed 22 August 2022)</p>
<p>Sheidai, M., Taban, F., Talebi, S.M. &amp;Noormohammadi, Z. (2016) Genetic and morphological diversity in <em>Stachys lavandulifolia</em> (Lamiaceae) populations. <em>Biologija</em> 62 (1): 9–24.&nbsp; https://doi.org/10.6001/biologija.v62i1.3286</p>
<p>Song, J., Cui, B.K. (2017) Phylogeny, divergence time and historical biogeography of <em>Laetiporus</em> (Basidiomycota, Polyporales). <em>BMC Ecology and Evolution </em>17: 102–114.&nbsp; https://doi.org/10.1186/s12862-017-0948-5</p>
<p>Spellerberg, I.F. &amp; Sawyer, W.D. (1999) <em>An introduction to applied biogeography.</em> Cambridge University Press: New York.</p>
<p>Stebbins, G.L. &amp; Day, A. (1967) Cytogenetic evidence for long continued stability in the genus <em>Plantago</em>. <em>Evolution</em> 21: 409–428.&nbsp; https://doi.org/10.1111/j.1558-5646.1967.tb03399.x</p>
<p>Swofford, D.L. (2002) PAUP* Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.&nbsp; https://doi.org/10.1111/j.0014-3820.2002.tb00191.x</p>
<p>Tabaripour, R., Sheidai, M., Talebi, S.M. &amp; Noormohammadi, Z. (2018) Genetic divergence and speciation within <em>Ziziphoracapitata</em> (Lamiaceae): Molecular and micro morphological evidences. <em>Biodiversitas</em> 2: 667–675.&nbsp; https://doi.org/10.13057/biodiv/d190250</p>
<p>Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. &amp; Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. <em>Molecular Biology and Evolution</em> 28: 2731–2739.&nbsp; https://doi.org/10.1093/molbev/msr121</p>
<p>Vahabi, A.A., Lotfi, A., Solouki, A.M. &amp; Bahrami, S. (2008) Molecular and Morphological Markers for the Evaluation of Diversity Between&nbsp;<em>Plantago ovata</em>&nbsp;in Iran.&nbsp;<em>Biotech</em> 7: 702–709.&nbsp;&nbsp; https://doi.org/10.3923/biotech.2008.702.709</p>
<p>White, T.J., Bruns, T., Lee, S. &amp; Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.<em> In: </em>Innis, M.A., Gelfand, D.H., Sninsky, J.J. &amp; White, T.J. (eds.) <em>PCR protocols: a guide to methods and applications.</em> Academic Press, San Diego, pp. 315–322.&nbsp; https://doi.org/10.1016/B978-0-12-372180-8.50042-1</p>
<p>Yu, Y., Harris, A.J. &amp; He, X.J. (2010) S-DIVA (Statistical Dispersal-Vicariance Analysis): A tool for inferring biogeographic histories. <em>Molecular Phylogenetics and Evolution </em>56 (2): 848–850.&nbsp; https://doi.org/10.1016/j.ympev.2010.04.011</p>
<p>Yu, Y., Harris, A.J., Blair, C., He, X.J. (2015) RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. <em>Molecular Phylogenetics and Evolution </em>87: 46–49. https://doi.org/10.1016/j.ympev.2015.03.008</p>