Abstract
Hydnobolites oaxacanus is described using molecular and morphological data. This new species is characterized by the whitish ascomata with orange spots, grey gleba, and 4-spored asci with ascospores of 17–45 × 15–20 µm. The new species differs from other American Hydnobolites such as H. californicum and H. cerebriformis by the number of ascospores per asci, and larger ascospore size and ornamentation. It is putatively associated with Quercus castanea in the Quercus-Pinus dry mixed forest. Photographs, descriptions, and molecular phylogeny of the ITS region are presented.
References
<p>Alvarado, P., Moreno, G., Manjon, J.L., Gelpi, C., Kaounas,V., Konstantinidis, G., Barseghyan, G. & Venturella, G. (2001) First molecular data on <em>Delastria rosea</em>, <em>Fischerula macrospora</em> and <em>Hydnocystis piligera</em>. <em>Boletín de la Sociedad Micológica de Madrid</em> 35: 75–81.</p>
<p>Bahram, M., Polme, S., Koljalg, U., Zarre, S. & Tedersoo, L. (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. <em>New Phytologist </em>193 (2): 465–473. https://doi.org/10.1111/j.1469-8137.2011.03927.x.</p>
<p>Brock, P.M., Doring, H. & Bidartondo, M.I. (2009) How to know unknown fungi: the role of a herbarium<em>. New Phytologist</em> 181 (3): 719–724. https://doi.org/10.1111/j.1469-8137.2008.02703.x</p>
<p>Castellano, M.A., Trappe, J.M. & Luoma, D.L. (2004) Sequestrate Fungi. <em>In</em>: Mueller, G.M., Bills, G.F. & Foster, M.S. (eds.) <em>Biodiversity of fungi. Inventory and monitoring methods</em>. Elsevier Academic Press, San Diego, pp. 197–213.</p>
<p>Castellano, M.A., Trappe, J.M., Maser, Z. & Maser, S. (1986) <em>Key to spores of the genera of hypogeous fungi of North America, with reference to animal mycophagy</em>. Mad River Press, Eureka, 185 pp.</p>
<p>Cázares, E., García, J., Castillo, J. & Trappe, J.M. (1992) Hypogeous fungi from northern Mexico. <em>Mycologia</em> 84: 341–359. https://doi.org/10.2307/3760186</p>
<p>Corda, A.K.L. (1854) <em>Iconum fungorum hucusque cognitorum.</em> Prague. 91 pp.</p>
<p>Erlandson, S.R., Savage, J.A., Cavender-Bares, J.M. & Peay, K.G. (2016) Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. <em>FEMS Microbiology Ecology</em> 92 (1): fiv148. https://doi.org/10.1093/femsec/fiv148</p>
<p>Fisch, E. (1938) <em>Die Natürlichen Pflanzenfamilien</em>. Leipzig. 462 pp.</p>
<p>Fisch, E. (1905) <em>Repertorium specierum novarum regni vegetabilis</em>. Berlin. 176 pp.</p>
<p>Frandsen, P.B., Calcott, B., Mayer, C. & Lanfear, R. (2015) Automatic selection of partitioning schemes for phylogenetic analyses using iterative <em>k</em>-means clustering of site rates. <em>BMC Evolutionary Biology</em> 15: 1−17. https://doi.org/10.1186/s12862-015-0283-7</p>
<p>Gómez-Reyes, V.M., Vásquez-Marrufo, G., Ortega-Gómez, A.M. & Guevara-Guerrero, G. (2018) Ascomicetos hipogeos de la región occidental del Sistema Volcánico Transversal, México. <em>Acta Botánica Mexicana</em> 125: 37–48. https://doi.org/10.21829/abm125.2018.1327</p>
<p>Gilkey, H.M. (1916) A revision of the Tuberales of California. <em>University of California Publications in Botany</em> 6: 275–356.</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41: 95−98.</p>
<p>Healy, R.A., Smith, M.E., Bonito, G.M., Pfister, D.H, Ge, Z.W., Guevara, G., Williams, G., Stafford, K., Kumar, L., Lee, T., Hobart, C., Trappe, J., Vilgalys, R. & McLaughlin, D.J. (2013) High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. <em>Molecular Ecology </em>22 (6): 1717–1732. https://doi.org/10.1111/mec.12135</p>
<p>Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. <em>Bioinformatics </em>17 (8): 754−755. https://doi.org/10.1093/bioinformatics/17.8.754</p>
<p>Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. <em>Molecular Biology and Evolution </em>30 (4): 772−780. https://doi.org/10.1093/molbev/mst010</p>
<p>Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. <em>Nucleic Acids Research </em>30 (14): 3059–3066. https://doi.org/10.1093/nar/gkf436</p>
<p>Katoh, K., Rozewicki, J. & Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20 (4): 1160−1166. https://doi.org/10.1093/bib/bbx108</p>
<p>Kornerup, A. & Wanscher, H. (1978) <em>Methuen handbook of colour</em>. 3rd edition. Eyre, London, 227 pp.</p>
<p>Lang, C., Seven, J. & Polle, A. (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European Forest. <em>Mycorrhiza </em>21 (4): 297–308. https://doi.org/10.1007/s00572-010-0338-y.</p>
<p>Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets. <em>BMC Evolutionary Biology</em> 14<em>: </em>1−14. https://doi.org/10.1186/1471-2148-14-82</p>
<p>Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. <em>Molecular Biology and Evolution</em> 34 (3): 772−773. https://doi:10.1093/molbev/msw260</p>
<p>Li, T., Cheng, M., Xu, Y-Y. & Fan, L. (2019) Four new species of <em>Hydnobolites</em> (sequestrate Pezizaceae, Ascomycota) from China. <em>Mycological progress </em>18: 405–414. https://doi.org/10.1007/s11557-018-01465-z</p>
<p>Leonardi, M., Iotti, M., Oddis, M., Lalli, G., Pacioni, G., Leonardi, P., Maccherini, S., Perini, C., Salerni, E. & Zambonelli, A. (2013) Assessment of ectomycorrhizal fungal communities in the natural habitats of <em>Tuber magnatum</em> (Ascomycota, Pezizales). <em>Mycorrhiza</em> 23 (5): 349–358. https://doi.org/10.1007/s00572-012-0474-7</p>
<p>Long, D., Liu, J., Han, Q., Wang, X. & Huang, J. (2016) Ectomycorrhizal fungal communities associated with <em>Populus simonii</em> and <em>Pinus tabuliformis</em> in the hilly-gully region of the Loess Plateau, China. <em>Scientific Reports</em> 6: 24336. https://doi.org/10.1038/srep24336</p>
<p>Martínez-González, C.R., Ramírez-Mendoza, R., Jiménez-Ramírez, J., Gallegos-Vázquez, C. & Luna-Vega, I. (2017) Improved method for genomic DNA extraction for <em>Opuntia</em> Mill. (Cactaceae). <em>Plant Methods</em> 13: 1−10. https://doi.org/10.1186/s13007-017-0234-y</p>
<p>Müller, K., Quandt, D., Müller, J. & Neinhuis, C. (2005) <em>PhyDE®-Phylogenetic data editor. Program distributed by the authors, versión 10.0.</em> Available from: https://www.phyde.de (accessed 22 November 2021).</p>
<p>Pegler, D.N., Spooner, B.M. & Young, T.W.K. (1993) <em>British truffles. A revision of British hypogeous fungi</em>. The Board of Trustees of the Royal Botanical Gardens, Kew, 215 pp.</p>
<p>Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) <em>Tracer v1.6</em>. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 22 November 2021).</p>
<p>Raymundo, T., Valenzuela, R., Ramírez-Martínez, J.C., Martínez-Pineda, M., Cobos-Villagrán, A. Trejo-Arana, A., Sánchez-Flores, M., Gay-González, A.D. & Luna-Vega, I. (2020) New records of Ascomycetes from the Tropical Montane Cloud Forest of eastern Mexico. <em>Phytotaxa</em> 454 (3): 161–185. https://doi.org/10.11646/phytotaxa.454.3.1</p>
<p>Roy, M., Rochet, J., Manzi, S., Jargeat, P., Gryta, H., Moreau, P.A. & Gardes, M. (2013) What determines <em>Alnus</em>-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. <em>New Phytologist</em> 198 (4): 1228–1238. https://doi.org/10.1111/nph.12212</p>
<p>Sánchez-Flores, M., Valenzuela, R., Hernández-Muñoz, M.A., García-Jiménez, J., Martínez-Pineda, M. & Raymundo, T. (2020) Ascomicetos del bosque mesófilo de montaña de Honey, Puebla de los Ángeles, México. <em>Acta Botanica Mexicana</em> 127: e1719. https://doi.org/10.21829.2020.1719</p>
<p>Smith, M.E. & Schmull, M. (2011) Tropical truffles: English translation and critical review of F. von Höhnel’s truffles from Java. <em>Mycological Progress</em> 10 (2): 249–260. https://doi.org/10.1007/s11557-010-0694-1</p>
<p>Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Tedersoo, L., Mett, M., Ishida, T.A. & Bahram, M. (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. <em>New Phytologist</em> 199 (3): 822–831.</p>
<p>Trappe, M., Evans, F. & Trappe, J. (2007) <em>Field Guide to North American Truffles: Hunting, Identifying, and Enjoying the World’s Most Prized Fungi</em>. Ten Speed Press, California. 144 pp.</p>
<p>Trappe, J.M., Molina, R., Luoma, D.L., Cázares, E., Pilz, D., Smith, J.E., Castellano, M.A., Miller, L. & Trappe, J.M. (2009) <em>Diversity, ecology and conservation of the truffle fungi in forests of the pacific northwest</em>. US Dept. of Agriculture, Forest Service General Technical Report, PNW-GTR-772, Portland 194 pp.</p>
<p>Tulasne, R.L. & Tulasne, C. (1843<em>) Annales des sciences naturelles. Botanique</em> 19: 278.</p>
<p>Tulasne, R.L. & Tulasne, C. (1851) <em>Fungi hypogaei. Histoire et monographie des champignons hypogés</em>. Paris. 222 pp.</p>
<p>Vittadini, C. (1831) <em>Monographia tuberacearum. </em>Mediolani, 88 pp.</p>
<p>White, T.J., Bruns, T.D., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.<em> In</em>: Innis, M.A., Gelfand, D.H., Sninsky, J. & White, T.J. (Eds.) <em>PCR protocols: a guide to methods and applications</em>. Academic, San Diego, pp. 315–322.</p>
<p>Wu, E., Lan, Z., Xiang, Y. & Han, Z. (1993) A new species of Tuberales from China. <em>Mycological research</em> 97 (8): 1021–1022.</p>
<p>Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000) A greedy algorithm for aligning DNA sequences. <em>Journal of Computational Biology</em> 7: 203−214.</p>
<p>Bahram, M., Polme, S., Koljalg, U., Zarre, S. & Tedersoo, L. (2012) Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. <em>New Phytologist </em>193 (2): 465–473. https://doi.org/10.1111/j.1469-8137.2011.03927.x.</p>
<p>Brock, P.M., Doring, H. & Bidartondo, M.I. (2009) How to know unknown fungi: the role of a herbarium<em>. New Phytologist</em> 181 (3): 719–724. https://doi.org/10.1111/j.1469-8137.2008.02703.x</p>
<p>Castellano, M.A., Trappe, J.M. & Luoma, D.L. (2004) Sequestrate Fungi. <em>In</em>: Mueller, G.M., Bills, G.F. & Foster, M.S. (eds.) <em>Biodiversity of fungi. Inventory and monitoring methods</em>. Elsevier Academic Press, San Diego, pp. 197–213.</p>
<p>Castellano, M.A., Trappe, J.M., Maser, Z. & Maser, S. (1986) <em>Key to spores of the genera of hypogeous fungi of North America, with reference to animal mycophagy</em>. Mad River Press, Eureka, 185 pp.</p>
<p>Cázares, E., García, J., Castillo, J. & Trappe, J.M. (1992) Hypogeous fungi from northern Mexico. <em>Mycologia</em> 84: 341–359. https://doi.org/10.2307/3760186</p>
<p>Corda, A.K.L. (1854) <em>Iconum fungorum hucusque cognitorum.</em> Prague. 91 pp.</p>
<p>Erlandson, S.R., Savage, J.A., Cavender-Bares, J.M. & Peay, K.G. (2016) Soil moisture and chemistry influence diversity of ectomycorrhizal fungal communities associating with willow along an hydrologic gradient. <em>FEMS Microbiology Ecology</em> 92 (1): fiv148. https://doi.org/10.1093/femsec/fiv148</p>
<p>Fisch, E. (1938) <em>Die Natürlichen Pflanzenfamilien</em>. Leipzig. 462 pp.</p>
<p>Fisch, E. (1905) <em>Repertorium specierum novarum regni vegetabilis</em>. Berlin. 176 pp.</p>
<p>Frandsen, P.B., Calcott, B., Mayer, C. & Lanfear, R. (2015) Automatic selection of partitioning schemes for phylogenetic analyses using iterative <em>k</em>-means clustering of site rates. <em>BMC Evolutionary Biology</em> 15: 1−17. https://doi.org/10.1186/s12862-015-0283-7</p>
<p>Gómez-Reyes, V.M., Vásquez-Marrufo, G., Ortega-Gómez, A.M. & Guevara-Guerrero, G. (2018) Ascomicetos hipogeos de la región occidental del Sistema Volcánico Transversal, México. <em>Acta Botánica Mexicana</em> 125: 37–48. https://doi.org/10.21829/abm125.2018.1327</p>
<p>Gilkey, H.M. (1916) A revision of the Tuberales of California. <em>University of California Publications in Botany</em> 6: 275–356.</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41: 95−98.</p>
<p>Healy, R.A., Smith, M.E., Bonito, G.M., Pfister, D.H, Ge, Z.W., Guevara, G., Williams, G., Stafford, K., Kumar, L., Lee, T., Hobart, C., Trappe, J., Vilgalys, R. & McLaughlin, D.J. (2013) High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. <em>Molecular Ecology </em>22 (6): 1717–1732. https://doi.org/10.1111/mec.12135</p>
<p>Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. <em>Bioinformatics </em>17 (8): 754−755. https://doi.org/10.1093/bioinformatics/17.8.754</p>
<p>Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. <em>Molecular Biology and Evolution </em>30 (4): 772−780. https://doi.org/10.1093/molbev/mst010</p>
<p>Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. <em>Nucleic Acids Research </em>30 (14): 3059–3066. https://doi.org/10.1093/nar/gkf436</p>
<p>Katoh, K., Rozewicki, J. & Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20 (4): 1160−1166. https://doi.org/10.1093/bib/bbx108</p>
<p>Kornerup, A. & Wanscher, H. (1978) <em>Methuen handbook of colour</em>. 3rd edition. Eyre, London, 227 pp.</p>
<p>Lang, C., Seven, J. & Polle, A. (2011) Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European Forest. <em>Mycorrhiza </em>21 (4): 297–308. https://doi.org/10.1007/s00572-010-0338-y.</p>
<p>Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets. <em>BMC Evolutionary Biology</em> 14<em>: </em>1−14. https://doi.org/10.1186/1471-2148-14-82</p>
<p>Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. <em>Molecular Biology and Evolution</em> 34 (3): 772−773. https://doi:10.1093/molbev/msw260</p>
<p>Li, T., Cheng, M., Xu, Y-Y. & Fan, L. (2019) Four new species of <em>Hydnobolites</em> (sequestrate Pezizaceae, Ascomycota) from China. <em>Mycological progress </em>18: 405–414. https://doi.org/10.1007/s11557-018-01465-z</p>
<p>Leonardi, M., Iotti, M., Oddis, M., Lalli, G., Pacioni, G., Leonardi, P., Maccherini, S., Perini, C., Salerni, E. & Zambonelli, A. (2013) Assessment of ectomycorrhizal fungal communities in the natural habitats of <em>Tuber magnatum</em> (Ascomycota, Pezizales). <em>Mycorrhiza</em> 23 (5): 349–358. https://doi.org/10.1007/s00572-012-0474-7</p>
<p>Long, D., Liu, J., Han, Q., Wang, X. & Huang, J. (2016) Ectomycorrhizal fungal communities associated with <em>Populus simonii</em> and <em>Pinus tabuliformis</em> in the hilly-gully region of the Loess Plateau, China. <em>Scientific Reports</em> 6: 24336. https://doi.org/10.1038/srep24336</p>
<p>Martínez-González, C.R., Ramírez-Mendoza, R., Jiménez-Ramírez, J., Gallegos-Vázquez, C. & Luna-Vega, I. (2017) Improved method for genomic DNA extraction for <em>Opuntia</em> Mill. (Cactaceae). <em>Plant Methods</em> 13: 1−10. https://doi.org/10.1186/s13007-017-0234-y</p>
<p>Müller, K., Quandt, D., Müller, J. & Neinhuis, C. (2005) <em>PhyDE®-Phylogenetic data editor. Program distributed by the authors, versión 10.0.</em> Available from: https://www.phyde.de (accessed 22 November 2021).</p>
<p>Pegler, D.N., Spooner, B.M. & Young, T.W.K. (1993) <em>British truffles. A revision of British hypogeous fungi</em>. The Board of Trustees of the Royal Botanical Gardens, Kew, 215 pp.</p>
<p>Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) <em>Tracer v1.6</em>. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 22 November 2021).</p>
<p>Raymundo, T., Valenzuela, R., Ramírez-Martínez, J.C., Martínez-Pineda, M., Cobos-Villagrán, A. Trejo-Arana, A., Sánchez-Flores, M., Gay-González, A.D. & Luna-Vega, I. (2020) New records of Ascomycetes from the Tropical Montane Cloud Forest of eastern Mexico. <em>Phytotaxa</em> 454 (3): 161–185. https://doi.org/10.11646/phytotaxa.454.3.1</p>
<p>Roy, M., Rochet, J., Manzi, S., Jargeat, P., Gryta, H., Moreau, P.A. & Gardes, M. (2013) What determines <em>Alnus</em>-associated ectomycorrhizal community diversity and specificity? A comparison of host and habitat effects at a regional scale. <em>New Phytologist</em> 198 (4): 1228–1238. https://doi.org/10.1111/nph.12212</p>
<p>Sánchez-Flores, M., Valenzuela, R., Hernández-Muñoz, M.A., García-Jiménez, J., Martínez-Pineda, M. & Raymundo, T. (2020) Ascomicetos del bosque mesófilo de montaña de Honey, Puebla de los Ángeles, México. <em>Acta Botanica Mexicana</em> 127: e1719. https://doi.org/10.21829.2020.1719</p>
<p>Smith, M.E. & Schmull, M. (2011) Tropical truffles: English translation and critical review of F. von Höhnel’s truffles from Java. <em>Mycological Progress</em> 10 (2): 249–260. https://doi.org/10.1007/s11557-010-0694-1</p>
<p>Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Tedersoo, L., Mett, M., Ishida, T.A. & Bahram, M. (2013) Phylogenetic relationships among host plants explain differences in fungal species richness and community composition in ectomycorrhizal symbiosis. <em>New Phytologist</em> 199 (3): 822–831.</p>
<p>Trappe, M., Evans, F. & Trappe, J. (2007) <em>Field Guide to North American Truffles: Hunting, Identifying, and Enjoying the World’s Most Prized Fungi</em>. Ten Speed Press, California. 144 pp.</p>
<p>Trappe, J.M., Molina, R., Luoma, D.L., Cázares, E., Pilz, D., Smith, J.E., Castellano, M.A., Miller, L. & Trappe, J.M. (2009) <em>Diversity, ecology and conservation of the truffle fungi in forests of the pacific northwest</em>. US Dept. of Agriculture, Forest Service General Technical Report, PNW-GTR-772, Portland 194 pp.</p>
<p>Tulasne, R.L. & Tulasne, C. (1843<em>) Annales des sciences naturelles. Botanique</em> 19: 278.</p>
<p>Tulasne, R.L. & Tulasne, C. (1851) <em>Fungi hypogaei. Histoire et monographie des champignons hypogés</em>. Paris. 222 pp.</p>
<p>Vittadini, C. (1831) <em>Monographia tuberacearum. </em>Mediolani, 88 pp.</p>
<p>White, T.J., Bruns, T.D., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.<em> In</em>: Innis, M.A., Gelfand, D.H., Sninsky, J. & White, T.J. (Eds.) <em>PCR protocols: a guide to methods and applications</em>. Academic, San Diego, pp. 315–322.</p>
<p>Wu, E., Lan, Z., Xiang, Y. & Han, Z. (1993) A new species of Tuberales from China. <em>Mycological research</em> 97 (8): 1021–1022.</p>
<p>Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000) A greedy algorithm for aligning DNA sequences. <em>Journal of Computational Biology</em> 7: 203−214.</p>