Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-08-11
Page range: 81-92
Abstract views: 63
PDF downloaded: 4

Deep sequencing of the epitype specimen of Synarthrophyton patena (Hooker f. & Harvey) R.A.Townsend (Hapalidiales, Rhodophyta) confirms the correct application of this name

Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California, USA
BioCost Research Group, Universidade da Coruña, Facultad de Ciencias, Campus de A Zapateira S/N, 15071, A Coruña, Spain
Herbarium and Biology Department, Coker Hall, CB 3280, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599-3280, USA
Melobesia patena rbcL psbA Synarthrophyton systematics Algae

Abstract

Synarthrophyton patena (Hooker f. & Harvey) R.A.Townsend is a discoid marine coralline red alga distributed in the southwestern Pacific Ocean (type locality: southeast North Island, New Zealand). It is the generitype of Synarthrophyton R.A.Townsend, a genus of taxonomic debate. High-throughput sequencing was performed on the herein designated epitype specimen of S. patena to characterize its genetic markers and organellar genome structure. The complete plastid genome of S. patena is 181,685 bp in length and contains 232 genes. A partial mitogenome was assembled amounting to 25,779 bp and encodes 46 genes. Both genomes show a high level of gene synteny to the organellar genomes of S. chejuense. DNA markers rbcL, psbA, and cox1 are identical or very similar to sequences deposited in GenBank and analyzed here under the same name from Australia (including Tasmania) and New Zealand. A combined phylogenetic analysis of S. patena using rbcL and psbA gene sequences fully resolved it in a clade with other S. patena, Synarthrophyton spp., and unidentified Hapalidiales. These data confirm the accurate application of the binomial S. patena, stabilize the use of the generitype, and contribute to future congeneric evolutionary and taxonomic studies in the Hapalidiaceae.

References

<p>Adey, W.H., Hernandez-Kantun, J.J., Johnson, G. &amp; Gabrielson, P.W. (2015) DNA sequencing, anatomy and calcification patterns support a monophyletic, subarctic, carbonate reef-forming <em>Clathromorphum</em> (Hapalidiaceae, Corallinales, Rhodophyta. <em>Journal of Phycology</em> 51: 189–203.&nbsp; https://doi.org/10.1111/jpy.12266</p>
<p>Adey, W.H., Hernández-Kantún, J.J., Gabrielson, P.W., Nash, M.C. &amp; Hayek, L.C. (2018) <em>Phymatolithon</em> (Melobesioideae, Hapalidiales) in the boreal-subarctic transition zone of the North Atlantic: A correlation of plastid DNA markers with morpho-anatomy, ecology, and biogeography. <em>Smithsonian Contributions to the Marine Sciences </em>57: i–vii + 1–90.</p>
<p>Athanasiadis, A. (2019) <em>Carlskottsbergia antarctica</em> (Hooker fil. &amp; Harv.) gen. &amp; comb. nov., with a re-assessment of <em>Synarthrophyton</em> (Mesophyllaceae, Corallinales, Rhodophyta). <em>Nova Hedwigia</em> 108: 291–320.&nbsp; https://doi.org/10.1127/nova_hedwigia/2018/0506</p>
<p>Bailey, J.C. &amp; Chapman, R.L. (1998) A phylogenetic study of the corallinales (Rhodophyta) based on nuclear small-subunit rRNA gene sequences. <em>Journal of Phycology</em> 34: 692–705.&nbsp; https://doi.org/10.1046/j.1529-8817.1998.340692.x</p>
<p>Bittner, L., Payri, C., Maneveldt, G., Couloux, A., Cruaud, C., de Reviers, B. &amp; Le Gall, L. (2011) Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. <em>Molecular Phylogenetics and Evolution</em> 61: 697–713.&nbsp; https://doi.org/10.1016/j.ympev.2011.07.019</p>
<p>Bustamante, D.E., Calderon, M.S. &amp; Hughey, J.R. (2019) Conspecificity of the Peruvian <em>Corallina ferreyrae</em> with <em>C. caespitosa </em>(Corallinaceae, Rhodophyta) inferred from genomic analysis of the type specimen. <em>Mitochondrial DNA Part B Resources</em> 4: 1285–1286.&nbsp; https://doi.org/10.1080/23802359.2019.1591203</p>
<p>Calderon, M.S., Bustamante, D.E., Gabrielson, P.W., Martone, P.T., Hind, K.R., Schipper, S.R. &amp; Mansilla, A. (2021) Type specimen sequencing, multilocus analyses, and species delimitation methods recognize the cosmopolitan <em>Corallina berteroi</em> and establish the northern Japanese <em>C. yendoi</em> sp. nov. (Corallinaceae, Rhodophyta). <em>Journal of Phycology</em> 57: 1659–1672.&nbsp; https://doi.org/10.1111/jpy.13202</p>
<p>Chapman, V.J. &amp; Parkison, P.G. (1974) <em>The Marine Algae of New Zealand. Part III. Rhodophyceae. Issue 3: Cryptonemiales. </em>J. Cramer, Lehre. 155–278.</p>
<p>Coutinho, L.M., Gomes, F.P., Sissini, M.N., Vieira-Pinto, T., de Oliveira Henriques, M.C.M., Oliveira, M.C., Horta, P.A. &amp; de Barros Barreto, M.B.B. (2022) Cryptic diversity in non-geniculate coralline algae: a new genus <em>Roseolithon</em> (Hapalidiales, Rhodophyta) and seven new species from the Western Atlantic. <em>European Journal of Phycology</em> 57: 227–250.&nbsp; https://doi.org/10.1080/09670262.2021.1950839</p>
<p>Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.-F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.-M. &amp; Gascuel, O. (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. <em>Nucleic Acids Res</em>earch 36: W465–W469.&nbsp; https://doi.org/10.1093/nar/gkn180</p>
<p>De Toni, G.B. (1905) <em>Sylloge algarum omnium hucusque cognitarum. Vo. IV. Floridae. Sectio IV. </em>Patavii [Padova]: suptibus auctoris. pp. [i–v], 1523–1973.</p>
<p>De Toni, G.B. &amp; Forti, A. (1923) Alghe di Australia, Tasmania e Nuova Zelanda raccolte dal rev. dott. Giuseppe Capra nel 1908-1909. <em>Memorie del Reale Istituto Veneto di Scienze, Lettere ed Arti</em> 29: 1–183.</p>
<p>Foslie, M. (1898) List of species of the Lithothamnia. <em>Kongelige Norske Videnskabers Selskabs Skrifter</em> 1898: 1–11.</p>
<p>Gabrielson, P.W., Miller, K.A. &amp; Martone, P.T. (2011) Morphometric and molecular analyses confirm two species of <em>Calliarthron</em> (Corallinales, Rhodophyta), a genus endemic to the northeast Pacific. <em>Phycologia</em> 50: 298–316.&nbsp; https://doi.org/10.2216/10-42.1</p>
<p>Gabrielson, P.W., Hughey, J.R. &amp; Diaz-Pulido, G. (2018) Genomics reveals abundant speciation in the coral reef building alga <em>Porolithon onkodes</em> (Corallinales, Rhodophyta) (Letter). <em>Journal of Phycology</em> 54: 429–434.&nbsp; https://doi.org/10.1111/jpy.12761</p>
<p>Gabrielson, P.W., Lindstrom, S.C. &amp; Hughey, J.R. (2019) <em>Neopolyporolithon loculosum</em> is a junior synonym of <em>N. arcticum comb. nov. </em>(Hapalidiales, Rhodophyta), based on sequencing type material. <em>Phycologia</em> 58: 229–233.&nbsp; https://doi.org/10.1080/00318884.2018.1541272</p>
<p>Harvey, A.S., Woelkerling, W.J. &amp; Wilks, K.M. (1994) The genus <em>Synarthrophyton</em> (Corallinaceae Rhodophyta) in southern Australia. <em>Phycologia</em> 33: 331–342. https://doi.org/10.2216/i0031-8884-33-5-331.1</p>
<p>Harvey, W.H. (1849) <em>Nereis australis, or algae of the southern ocean: being figures and descriptions of marine plants, collected on the shores of the Cape of Good Hope, the extra-tropical Australian colonies, Tasmania, New Zealand, and the Antarctic regions; deposited in the Herbarium of the Dublin University.</em> [Part 2]. Reeve Brothers, London. pp. 65–124.</p>
<p>Hernández-Kantún, J.J., Riosmena-Rodriguez, R., Hall-Spencer, J.M., Peña, V., Maggs, C.A. &amp; Rindi, F. (2015) Phylogenetic analysis of rhodolith formation in the Corallinales (Rhodophyta). <em>European Journal of Phycology</em> 50: 46–61.&nbsp; https://doi.org/10.1080/09670262.2014.984347</p>
<p>Hernández-Kantún, J.J., Gabrielson, P.W., Hughey, J.R., Pezzolesi, L., Rindi, F., Robinson, N.M., Peña, V., Riosmena-Rodriguez, R., Le Gall, L. &amp; Adey, W.H. (2016) Reassessment of branched <em>Lithophyllum</em> spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. <em>Phycologia</em> 55: 609–635.&nbsp; https://doi.org/10.2216/16-7.1</p>
<p>Heydrich, F. (1897) Melobesiae. <em>Berichte der deutsche botanischen Gesellschaft</em> 15: 403–420.</p>
<p>Hind, K.R., Gabrielson, P.W., Lindstrom, S.C. &amp; Martone, P.T. (2014) Misleading morphologies and the importance of sequencing type specimens for resolving coralline taxonomy (Corallinales, Rhodophyta): <em>Pachyarthron cretaceum</em> is <em>Corallina officinalis</em>. <em>Journal of Phycology</em> 50: 760–764.&nbsp; https://doi.org/10.1111/jpy.12205</p>
<p>Hind, K.R., Miller, K.A., Young, M., Jensen, C., Gabrielson, P.W. &amp; Martone, P.T. (2015) Resolving cryptic species of <em>Bossiella</em> (Corallinales, Rhodophyta) using contemporary and historical DNA. <em>American Journal of Botany</em> 102: 1–19.&nbsp; https://doi.org/10.3732/ajb.1500308</p>
<p>Hind, K.R., Gabrielson, P.W., Jensen, C.P. &amp; Martone, P.T. (2016) <em>Crusticorallina</em> gen. nov., a non-geniculate genus in the subfamily Corallinoideae (Corallinales, Rhodophyta). <em>Journal of Phycology</em> 52: 929–941.&nbsp; https://doi.org/10.1111/jpy.12449</p>
<p>Hughey, J.R. &amp; Gabrielson, P.W. (2012) Comment on “Acquiring DNA sequence data from dried archival red algae (Florideophyceae) for the purpose of applying available names to contemporary genetic species: a critical assessment”. <em>Botany</em> 90: 1191–1194.&nbsp; https://doi.org/10.1139/b2012-102</p>
<p>Hughey, J.R., Gabrielson, P.W., Maggs, C.A. &amp; Mineur, F. (2021) Genomic analysis of the lectotype specimens of European <em>Ulva rigida</em> and <em>Ulva lacinulata </em>(Ulvaceae, Chlorophyta) reveals the ongoing misapplication of names. <em>European Journal of Phycology</em> 57: 143–153.&nbsp; https://doi.org/10.1080/09670262.2021.1914862</p>
<p>Jeong, S.Y., Diaz-Pulido, G., Maneveldt, G.M., Gabrielson, P.W., Nelson, W.A., Won, B.Y. &amp; Cho, T.O. (2022) <em>Phymatolithopsis </em>gen. nov. (Hapalidiales, Corallinophycidae, Rhodophyta) based on molecular and morpho-anatomical evidence. <em>Journal of Phycology</em> 58: 161–178.&nbsp; https://doi.org/10.1111/jpy.13227</p>
<p>Jesionek, M.B., Bahia, R.G., Hernández-Kantún, J., Adey, W.H., Yoneshigue-Valentin, Y., Longo, L.L. &amp; Amado-Filho, G.M. (2016) A taxonomic account of non-geniculate coralline algae (Corallinophycidea, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. <em>Algae </em>31: 317–340.&nbsp; https://doi.org/10.4490/algae.2016.31.11.16</p>
<p>Jesionek, M.B., Bahia, R.G., Lyra, M.B., Leão, L.A.B., Oliveira, M.C. &amp; Amado-Filho, G.M. (2020) Newly discovered coralline algae in Southeast Brazil: <em>Tectolithon fluminense gen. et sp. nov.</em> and <em>Crustaphytum atlanticum sp. nov.</em> (Hapalidiales, Rhodophyta). <em>Phycologia</em> 59: 101–115.&nbsp; https://doi.org/10.1080/00318884.2019.1702320</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20: 1160–1166.&nbsp; https://doi.org/10.1093/bib/bbx108</p>
<p>Katoh, K. &amp; Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. <em>Molecular Biology and Evolution</em> 30: 772–780.&nbsp; https://doi.org/10.1093/molbev/mst010</p>
<p>Kim, J.H., Chung, H., Choi, D.S. &amp; Lee, I.K. (2004) A new melobesioid alga <em>Synarthrophyton chejuensis </em>sp. nov. (Corallinales, Rhodophyta), including comparison with <em>Mesophyllum cystocarpideum</em>. <em>Phycologia</em> 43: 501–520.&nbsp; https://doi.org/10.2216/i0031-8884-43-5-501.1</p>
<p>Kim, K.M., Yang, E.C., Kim, J.H., Nelson, W.A. &amp; Yoon, H.S. (2015) Complete mitochondrial genome of a rhodolith, <em>Sporolithon durum </em>(Sporolithales, Rhodophyta). <em>Mitochondrial DNA</em> 26: 155–156.&nbsp; https://doi.org/10.3109/19401736.2013.819500</p>
<p>Kützing, F.T. (1858) <em>Tabulae phycologicae</em>; oder, Abbildungen der Tange. Gedruckt auf kosten des Verfassers (in commission bei W. Köhne), Nordhausen. 48 pp.</p>
<p>Le Gall, L. &amp; Saunders, G.W. (2007) A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red subalgal class Corallinophycidae. <em>Molecular Phylogenetics and Evolution</em> 43: 1118–1130.&nbsp; https://doi.org/10.1016/j.ympev.2006.11.012</p>
<p>Lee, J.M., Cho, C.H., Park, S.I., Choi, J.W., Song, H.S., West, J.A., Bhattacharya, D. &amp; Yoon, H.S. (2016) Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. <em>BCM Biology</em> 14: 75.&nbsp; https://doi.org/10.1186/s12915-016-0299-5</p>
<p>Lee, J.M., Song, H.J., Park, S.I., Lee, Y.M., Jeong, S.Y., Cho, T.O., Kim, J.H., Choi, H.G., Choi, C.G., Nelson, W.A., Fredericq, S., Bhattacharya, D. &amp; Yoon, H.S. (2018) Mitochondrial and plastid genomes from coralline red algae provide insights into the incongruent evolutionary histories of organelles. <em>Genome Biology and Evolution</em> 10: 2961–2972.&nbsp; https://doi.org/10.1093/gbe/evy222</p>
<p>Li, D., Liu, C.M., Luo, R., Sadakane, K. &amp; Lam, T.W. (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. <em>Bioinformatics</em> 31: 1674–1676.&nbsp; https://doi.org/10.1093/bioinformatics/btv033</p>
<p>Liu, L.-C., Lin, S.-M., Caragnano, A. &amp; Payri, C. (2018) Species diversity and molecular phylogeny of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from Taoyuan algal reefs in northern Taiwan, including <em>Crustaphytum </em>gen. nov. and three new species. <em>Journal of Applied Phycology</em> 30: 3455–3469.&nbsp; https://doi.org/10.1007/s10811-018-1620-1</p>
<p>Maneveldt, G.W., Jeong, S.Y., Cho, T.O., Hughey, J.R. &amp; Gabrielson, P.W. (2020) Reassessment of misapplied names, <em>Phymatolithon ferox</em> and <em>P. repandum</em> (Hapalidiales, Corallinophycidae, Rhodophyta) in South Africa, based on DNA sequencing of type and recently collected material. <em>Phycologia</em> 59: 449–455.&nbsp; https://doi.org/10.1080/00318884.2020.1800298</p>
<p>Mason, L.R. (1953) The crustaceous coralline algae of the Pacific coast of the United States, Canada and Alaska. <em>University of California Publications in Botany</em> 26: 313–389.</p>
<p>May, D.I. &amp; Woelkerling, W.J. (1988) Studies on the genus <em>Synarthrophyton</em> (Corallinaceae, Rhodophyta) and its type species, <em>S. patena</em> (J.D. Hooker et W.H. Harvey) Townsend. <em>Phycologia</em> 27: 50–71.&nbsp; https://doi.org/10.2216/i0031-8884-27-1-50.1</p>
<p>Molinari Novoam, E.A. in Guiry, M.D. &amp; Guiry, G.M. (2021) <em>AlgaeBase</em>. World-wide electronic publication, National University of Ireland, Galway. Available from: https://www.algaebase.org (searched 25 February 2022)</p>
<p>Nelson, W.A., Sutherland, J.E., Farr, T.J., Hart, D.R., Neill, K.F., Kim, H.J. &amp; Yoon, H.S. (2015) Multi-gene phylogenetic analyses of New Zealand coralline algae: <em>Corallinapetra novaezelandiae </em>gen. et sp. nov. and recognition of the Hapalidiales ord. nov. <em>Journal of Phycology</em> 51: 454–468.&nbsp; https://doi.org/10.1111/jpy.12288</p>
<p>Pardo, C., López, L., Peña, V., Hernández-Kantún, J., Le Gall, L., Bárbara, I. &amp; Barreiro, R. (2014) A multilocus species delimitation reveals a striking number of species of coralline algae forming maerl in the OSPAR Maritime Area. <em>PLoS ONE</em> 9 (8): e104073.&nbsp; https://doi.org/10.1371/journal.pone.0104073</p>
<p>Peña, V., Adey, W.H., Riosmena-Rodriguez, R., Jung, M.-Y., Afonso-Carrillo, J., Choi, H.-G. &amp; Bárbara, I. (2011) <em>Mesophyllum sphaericum</em> sp. nov. (Corallinales, Rhodophyta): a new maerl-forming species from the northeast Atlantic. <em>Journal of Phycology</em> 47: 911–927.&nbsp; https://doi.org/10.1111/j.1529-8817.2011.01015.x</p>
<p>Peña, V., De Clerck, O., Afonso-Carrillo, J., Ballesteros, E., Bárbara, I., Barreiro, R. &amp; Le Gall, L. (2015) An integrative systematic approach to species diversity and distribution in the genus <em>Mesophyllum</em> (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. <em>European Journal of Phycology</em> 50: 20–36.&nbsp; https://doi.org/10.1080/09670262.2014.981294</p>
<p>Peña, V.<em>, </em>Vieira, C.<em>, </em>Braga, J.C.<em>, </em>Aguirre, J.<em>, </em>Rösler, A.<em>, </em>Baele, G.<em>, </em>De Clerck, O.<em> &amp; </em>Le Gall, L. (2020) Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny<em>. Molecular Phylogenetics and Evolution </em>150<em>: </em>106845<em>.&nbsp; h</em>ttps://doi.org/10.1016/j.ympev.2020.106845</p>
<p>Peña, V., Bélanger, D., Gagnon, P., Richards, J.L., Le Gall, L., Hughey, J.R., Saunders, G.W., Lindstrom, S., Rinde, E., Husa, V., Christie, H., Fridriksen, S., Hall-Spencer, J.M., Steneck, R.S., Schoenrock, K.M.,Gitmark, J., Grefsrud, E.S., Anglès d’Auriac, M.B., Legrand, E., Grall, J., Mumford, T.F., Kamenos, N.A. &amp; Gabrielson, P.W. (2021) <em>Lithothamnion</em> (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematics foundation. <em>European Journal of Phycology</em> 56: 468–493. https://doi.org/10.1080/09670262.2021.1880643</p>
<p>Pezzolesi, L., Peña, V., Le Gall, L.,Gabrielson, P.W., Kaleb, S., Hughey, J.R., Rodondi, G., Hernandez-Kantun, J.J., Felace, A., Basso, D., Cerrano, C. &amp; Rindi, F. (2019) Mediterranean <em>Lithophyllum stictiforme</em> (Corallinales, Rhodophyta) ia a genetically diverse species complex: implications for species circumscription, biogeography and conservation of coralligenous habitats. <em>Journal of Phycology</em> 55: 473–492.&nbsp; https://doi.org/10.1111/jpy.12837</p>
<p>Puckree-Padua, C, Gabrielson, P.W., Hughey, J.R. &amp; Maneveldt, G.W. (2020) DNA sequencing of type material reveals <em>Pneophylllum marlothii</em> comb. nov. from South Africa and <em>P. discoideum</em> comb. nov. (Chamberlanoideae, Corallinales, Rhodophyta) from Argentina. <em>Journal of Phycology</em> 56: 1625–1641.&nbsp; https://doi.org/10.1111/jpy.13047</p>
<p>Richards, J.L., Sauvage, T., Schmidt, W.E., Fredericq, S., Hughey, J.R. &amp; Gabrielson, P.W. (2017) The coralline genera <em>Sporolithon</em> and <em>Heydrichia</em> (Sporolithales, Rhodophyta) clarified by sequencing type material of their generitypes and other species. <em>Journal of Phycol</em>ogy 53: 1044–1059.&nbsp; https://doi.org/10.1111/jpy.12562</p>
<p>Richards, J.L., Gabrielson, P.W., Hughey, J.R. &amp; Freshwater, D.W. (2018) A re-evaluation of subtidal <em>Lithophyllum</em> species (Corallinales, Rhodophyta) from North Carolina, USA, and the proposal of <em>L. searlesii sp. nov.</em> <em>Phycologia</em> 57: 318–330.&nbsp; https://doi.org/10.2216/17-110.1</p>
<p>Richards, J.L., Saunders, G.W., Hughey, J.R. &amp; Gabrielson, P.W. (2021a) Reinstatement of Indian Ocean <em>Porolithon coarctatum</em> and <em>P. gardineri</em> based on sequencing type specimens, and <em>P. epiphyticum</em> sp. nov. (Corallinales, Rhodophyta), with comments on subfamilies Hydrolithoideae and Metagoniolithoideae. <em>Botanica Marina</em> 64: 363–377.&nbsp; https://doi.org/10.1515/bot-2021-0041</p>
<p>Richards, J.L., Schmidt, W.E., Fredericq, S., Sauvage, T., Peña, V., Le Gall, L., Mateo-Cid, L.E., Mendoza-González, A.C., Hughey, J.R. &amp; Gabrielson, P.W. (2021b) DNA sequencing of type material and newly collected specimens reveals two heterotypic synonyms for <em>Harveylithon munitum</em> (Metagoniolithoideae, Corallinales, Rhodophyta) and three new species. <em>Journal of Phycology</em> 57: 1234–1253.&nbsp; https://doi.org/10.1111/jpy.13161</p>
<p>Ricker, R.W. (1987) <em>Taxonomy and biogeography of Macquarie Island seaweeds</em>. British Museum (Natural History), London. 344 pp.</p>
<p>Ronquist, F. &amp; Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. <em>Bioinformatics</em> 19: 1572–1574.&nbsp; https://doi.org/10.1093/bioinformatics/btg180</p>
<p>Rosanoff, S. (1866) Recherches anatomiques sur les Mélobésiées (<em>Hapalidium, Melobesia, Lithophyllum</em> et<em> Lithothamnion</em>). <em>Mémoires de la Société Impériale des Sciences Naturelles de Cherbourg</em> 12: 5–112.</p>
<p>Saunders, G.W. (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. <em>Philosophical Transactions of the Royal Society B</em> 360: 1879–1888.&nbsp; https://doi.org/10.1098/rstb.2005.1719</p>
<p>Saunders, G.W. &amp; Moore, T.E. (2013) Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. <em>Algae</em> 28: 31–43.&nbsp; https://doi.org/10.4490/algae.2013.28.1.031</p>
<p>Sciuto, K., Moschin, E., Alongi, G., Cecchetto, M., Schiaparelli, S., Caragnano, A., Rindi, F. &amp; Moro, I. (2021) <em>Tethysphytum antarcticum</em> gen. et sp. nov. (Hapalidiales, Rhodophyta), a new non-geniculate coralline alga from Terra Nova Bay (Ross Sea, Antarctica): morpho-anatomical characterization and molecular phylogeny. <em>European Journal of Phycology</em> 56: 416–427.&nbsp; https://doi.org/10.1080/09670262.2020.1854351</p>
<p>Scott, F.J., Saunders, G.W. &amp; Kraft, G.T (2013) <em>Entwisleia bella</em> gen. et sp. nov., a novel marine ‘batrachospermaceous’ red alga from southeastern Tasmania representing a new family and order in the Nemaliophycidae. <em>European Journal of Phycology</em> 48: 398–410.&nbsp; https://doi.org/10.1080/09670262.2013.849359</p>
<p>Seagrief, S.C. (1967) <em>The Seaweeds of the Tsitsikama Coastal National Park. </em>Johannesburg: National Parks Board of the Republic of South Africa, 147 pp.</p>
<p>Sissini, M.N., Oliveira, M.C., Gabrielson, P.W., Robinson, N.M., Okolodkov, Y.B., Riosmena-Rodriguez, R. &amp; Horta, P.A. (2014) <em>Mesophyllum erubescens</em> (Corallinales, Rhodophyta)--so many species in one epithet. <em>Phytotaxa</em> 190: 299–319.&nbsp; https://dx.doi.org/10.11646/phytotaxa.190.1.18</p>
<p>Townsend, R.A. (1979) <em>Synarthrophyton</em>, a new genus of Corallinaceae (Cryptonemiales, Rhodophyta) from the southern hemisphere. <em>Journal of Phycology</em> 15: 251–259.&nbsp; https://doi.org/10.1111/j.0022-3646.1979.00251.x</p>
<p>Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J. &amp; Smith, G.F. (Eds.) (2018) <em>International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile</em>, 159, [i]–xxxviii, 1–253. Koeltz Botanical Books, Glashütten. 253 pp.&nbsp; https://doi.org/10.12705/Code.2018</p>
<p>Twist, B.A., Neill, K.F., Bilewitch, J., Jeong, S.Y., Sutherland, J.E. &amp; Nelson, W.A. (2019) High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research. <em>PLOS One</em> 14: 12 e0225645.&nbsp; https://doi.org/10.1371/journal.pone.0225645</p>
<p>Van der Merwe, E., Miklasz, K., Channing, A., Maneveldt, G.W. &amp; Gabrielson, P.W. (2015) DNA sequencing resolves species of <em>Spongites</em> (Corallinales, Rhodophyta) in the Northeast Pacific and South Africa, including <em>S. agulhensis</em> sp. nov. <em>Phycologia</em> 54: 471–490.&nbsp; https://doi.org/10.2216/15-38.1</p>
<p>Woelkerling, W.J. (1988) <em>The Coralline Red Algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae</em>. British Museum (Natural History) &amp; Oxford University Press, London &amp; Oxford. 268 pp.</p>
<p>Womersley, H.B.S. (1996) <em>The marine benthic flora of southern Australia - Part IIIB - Gracilariales, Rhodymeniales, Corallinales and Bonnemaisoniales</em>. Australian Biological Resources Study with assistance from the State Herbarium of South Australia, Canberra &amp; Adelaide. 392 pp.</p>
<p>Yoon, H.S., Hackett, J.D. &amp; Bhattacharya, D. (2002) A single origin of the peridinin- and fucoxanthin- containing plastids in dinoflagellates through tertiary endosymbiosis. <em>Proceedings of the National Academy of Sciences</em> 99: 11724–11729.&nbsp; https://doi.org/10.1073/pnas.172234799</p>