Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-08-08
Page range: 281-290
Abstract views: 121
PDF downloaded: 2

Alternaria vignae sp. nov. (Ascomycota: Pleosporaceae) from Vigna unguiculata in China

Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China
Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China
Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China
Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou 434025, China; Forewarning and Management of Agricultural and Forestry Pests, Hubei Engineering Technology Center, Yangtze University, Jingzhou 434025, China
Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun 130112, China
Alternaria vignae sp. nov. Morphology Multi-locus phylogeny Taxonomy Vigna unguiculata Fungi

Abstract

Alternaria is a widely distributed fungal genus served as saprophytes, endophytes and pathogens. An Alternaria species was isolated from Vigna unguiculata in Inner Mongolia Autonomous Region of China. The strains were determined based on morphological characteristics and multi-locus phylogenetic analyses including the internal transcribed spacer of rDNA  region (ITS), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2) and translation-elongation factor 1 alpha (TEF1). The results indicated that it was a new species, which described and illustrated as Alternaria vignae sp. nov. in this study. Phylogenetic analyses showed that the species formed a well-supported clade (sect. Helianthiinficientes) close to A. helianthiinficiens.

References

<p>Abdulwehab, S.A., El-Nagerabi, S.A.F. &amp; Elshafie, A.E. (2015) Leguminicolous fungi associated with some seeds of sudanese legumes. <em>Biodiversitas Journal of Biological Diversity</em> 16: 269–280. https://doi.org/10.13057/biodiv/d160223</p>
<p>Aćimović, M &amp; Lačok, N. (1991) <em>Alternaria helianthiinficiens </em>Simmons, Walcz and R. Roberts sp. Nov.: The 248 causals agent of brown-red spot, a new sunflower disease. <em>Helia</em> 14: 129–145.</p>
<p>Berbee, M.L., Pirseyedi, M. &amp; Hubbard, S. (1999) Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. <em>Mycologia</em> 91: 964–977. https://doi.org/10.2307/3761627</p>
<p>Blagojevi, J., Vukojevi, J., Ivanovi, B. &amp; Ivanovi, A. (2019) Characterization of <em>Alternaria</em> species associated with leaf spot disease of <em>Armoracia rusticana </em>in serbia. <em>Plant Disease</em> 104: 1378–1389.&nbsp; https://doi.org/10.1094/PDIS-02-19-0289-RE</p>
<p>Cai, Z.Y., Liu, Y.X., Shi, Y.-P., Dai, L.M., Li, L.L., Mu, H.J., Lv, M.L. &amp; Liu, X.Y. (2019) <em>Alternaria yunnanensis</em> sp. nov., a new <em>Alternaria</em> species causing foliage spot of rubber tree in China. <em>Mycobiology</em> 47: 66–75. https://doi.org/10.1080/12298093.2019.1575584</p>
<p>Carbone, I. &amp; Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. <em>Mycologia</em> 91: 553–556. https://doi.org/10.1016/10.2307/3761358</p>
<p>Cenis, J. (1992) Rapid extraction of fungal DNA for PCR amplification. <em>Nucleic Acids Research</em> 20: 2380. https://doi.org/10.1093/nar/20.9.2380</p>
<p>Cheng, H., Zhao, L., Wei, X., Liu, X., Gao, G.Y. &amp; Deng, J.X. (2022) <em>Alter</em>naria species causing leaf spot on hemp (<em>Cannabis sativa</em>) in northern China. <em>European Journal of Plant Pathology</em> 162: 957–970. https://doi.org/10.1007/s10658-021-02450-1</p>
<p>Cho, H.S &amp; Yu, S.H. (2000) Three <em>Alternaria</em> species pathogenic to sunflower. <em>Plant Pathology Journal</em> 16: 331–334.</p>
<p>Deng, J.X., Cho, H.S., Paul, N.C., Lee, H.B. &amp; Yu, S.H. (2014) A novel <em>Alternaria</em> species isolated from <em>Peucedanum japonicum</em> in korea. <em>Mycobiology</em> 42: 12–16. https://doi.org/10.5941/MYCO.2014.42.1.12</p>
<p>Deng, J.X., Li, M.J., Paul, N.C., Oo, M.M. &amp; Yu, S.H. (2018) <em>Alternaria brassicifolii</em> sp. nov. isolated from <em>Brassica rapa</em> subsp. <em>pekinensis</em> in korea. <em>Mycobiology</em> 46: 172–176. https://doi.org/10.1080/12298093.2018.1468054</p>
<p>Gannibal, P.B., Orina, A.S. &amp; Gasich, E.L. (2022) A new section for <em>Alternaria</em> <em>helianthiinficiens</em> found on sunflower and new asteraceous hosts in Russia. <em>Mycological Progress</em> 21: 34.&nbsp; https://doi.org/10.1007/s11557-022-01780-6</p>
<p>Ghafri, A.A., Maharachchikumbura, S., Hyde, K.D., Al-Saady, N.A. &amp; Al-Sadi, A.M. (2019) A new section and a new species of <em>Alternaria</em> encountered from Oman. <em>Phytotaxa</em> 405: 279–289. https://doi.org/10.11646/phytotaxa.405.6.1</p>
<p>Grange, N.L. &amp; Aveling, T.A.S. (1998) First Report of <em>Alternaria cassiae</em> on Cowpea. <em>Plant Disease</em> 82: 1171–1171. https://doi.org/10.1094/PDIS.1998.82.10.1171A</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41: 95–98.</p>
<p>He, L., Liu, H.F., Cui, M.J., Pei, D.F. &amp; Deng, J.X. (2020) <em>Alternaria vicatiae</em> sp. nov. (Ascomycota: Pleosporaceae) Isolated from <em>Vicatia thibetica</em> in China. <em>Phytotaxa</em> 439: 255–264. https://doi.org/10.11646/phytotaxa.439.3.7</p>
<p>Hong, S.G., Cramer, R.A., Lawrence, C.B. &amp; Pryor, B.M. (2005) Alt a 1 allergen homologs from <em>Alternaria</em> and related taxa: analysis of phylogenetic content and secondary structure. <em>Fungal Genetics &amp; Biology</em> 42: 119–129. https://doi.org/10.1016/j.fgb.2004.10.009</p>
<p>Index Fungorum. (2022) Available at: http://www.indexfungorum.org/names/Names.asp (accessed 5 August 2022)</p>
<p>Lawrence, D.P., Rotondo, F. &amp; Gannibal, P.B. (2016) Biodiversity and taxonomy of the pleomorphic genus <em>Alternaria</em>. Mycological 15: 3. https://doi.org/10.1007/s11557-015-1144-x</p>
<p>Li, L., Yang, T., Liu, R., Redden, B., Maalouf, F. &amp; Zong, X.X. (2017) Food legume production in China. <em>The Crop Journal</em> 5: 115–126. https://doi.org/10.1016/j.cj.2016.06.001</p>
<p>Liu, H.F., Liao, J., Chen, X.Y., Liu, Q.K. &amp; Deng, J.X. (2019) A novel species and a new record of <em>Alternaria</em> isolated from two solanaceae plants in China. <em>Mycological Progress</em> 18: 1005–1012. https://doi.org/10.1007/s11557-019-01504-3</p>
<p>Liu, Y.J., Whelen, S. &amp; Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. <em>Molecular Biology and Evolution</em> l16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092</p>
<p>Luo, H., Jia, G.G., Fan, X.Y., Liu, H.F., Pei, D.F. &amp; Deng, J.X. (2017) Isolation and identification of a new pathogen causing leaf blight on <em>Cosmos bipinnatus</em>. <em>Plant Protection</em> 43: 182–186. https://doi.org/10.1093/bioinfo10.3969/j.issn.0529-1542.2017.06.032</p>
<p>Marin-Felix, Y., Hernández-Restrepo, M., Iturrieta-González, I., Garcia, D., Gene, J., Groenewald, J.Z., Cai, L., Chen, Q., Quaedvlieg, W., Schumacher, R.K., Taylor, P.W.J., Ambers, C., Bonthond, G., Edwards, J., Krueger-Hadfield, S.A., Luangsa-ard, J.J., Morton, L., Moslemi, A., Sandoval-Denis, M., Tan, Y.P., Thangavel, R., Vaghefi, N., Cheewangkoon, R. &amp; Crous, P.W. (2019) Genera of phytopathogenic fungi: GOPHY 3. <em>Studies in Mycology</em> 94: 1–124. https://doi.org/10.1016/j.simyco.2019.05.001</p>
<p>Nishikawa, J. &amp; Nakashima, C. (2020) Japanese species of <em>Alternaria</em> and their species boundaries based on host range. <em>Fungal Systematics and Evolution</em> 5: 197–282. https://doi.org/10.3114/fuse.2020.05.13</p>
<p>Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author, Evolutionary Biology Centre. Uppsala University.</p>
<p>Pinto, V. &amp; Patriarca, A. (2017) <em>Alternaria</em> species and their associated mycotoxins. <em>Mycotoxigenic Fungi</em> 1542: 13–32. https://doi.org/10.1007/978-1-4939-6707-0_2</p>
<p>Pitt, J.I. &amp; Hocking, A.D. (2009) <em>Fungi and Food Spoilage.</em> Springer US. XVI, 520 pp.&nbsp; https://doi.org/10.1007/978-0-387-92207-2</p>
<p>Rambaut, A. &amp; Drummond, A. (2010) FigTree v.1.3.1. Institute of Evolutionary Biology. University of Edinburgh, Edinburgh, UK.</p>
<p>Romain, B.B.N.D., Hassan, O., Kim, J.S. &amp; Chang, T. (2022) <em>Alternaria koreana</em> sp. nov., a new pathogen isolated from leaf spot of ovate-leaf Atractylodes in South Korea. <em>Molecular Biology Reports</em> 49: 413–420. https://doi.org/10.3114/fuse.2020.05.13</p>
<p>Ronquist, F. &amp; Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. <em>Bioinformatics</em> 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180</p>
<p>Simmons, E.G. (2007) <em>Alternaria: An identification manual.</em> American Society of Microbiology, Wash-ington D.C., USA 775 pp.&nbsp; https://doi.org/10.1093/molbev/msr121</p>
<p>Simmons, E.G. (1986) <em>Alternaria</em> themes and variations (17–21). <em>Mycotaxon</em> 25: 203–216.</p>
<p>Stamatakis, A. &amp; Alachiotis, N. (2010) Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. <em>Bioinformatics</em> 26: i132–i139. https://doi.org/10.1093/bioinformatics/btq205</p>
<p>Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood–basedphy-logenetic analyses with thousands of taxa and mixed models. <em>Bioinformatics</em> 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446</p>
<p>Sung, G.H., Sung, J.M., Hywel-Jones, N.L. &amp; Spatafora, J.W. (2007) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, fungi): identification of localized incongruence using a combinational bootstrap approach. <em>Molecular Phylogenetics and Evolution</em> 44: 1204–1223. https://doi.org/10.1016/j.ympev.2007.03.011</p>
<p>Tamura, K., Stecher, G., Peterson, D., Filipski, A. &amp; Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. <em>Molecular Biology and Evolution </em>l30: 2725–2729.</p>
<p>Thomma, B. (2003) <em>Alternaria</em> spp.: from general saprophyte to specific parasite. <em>Molecular Plant Pathology</em> 4: 225–236.&nbsp; https://doi.org/10.1046/j.1364-3703.2003.00173.x</p>
<p>White, T.J., Bruns, T. &amp; Lee, S. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.<em> In: </em>Innis, M.A., Gelfand, D.H., Sninsky, J.J. &amp; White, T.J. (Eds.) <em>PCR Protocols: A Guide to Methods and Applications.</em> Academic Press, SanDiego, ifornia, USA, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1</p>
<p>Woudenberg, J., Groenewald, J.Z., Binder, M. &amp; Crous, P.W. (2013) <em>Alternaria</em> redefined. <em>Studies in Mycology</em> 75: 171–212.</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; htps://doi.org/10.3114/sim0015</p>
<p>Woudenberg, J., Truter, M., Groenewald, J.Z. &amp; Crous, P.W. (2014) Large-spored <em>Alternaria</em> pathogens in section <em>Porri</em> disentangled. <em>Studies in Mycology</em> 79: 1–47. https://doi.org/10.1016/j.simyco.2014.07.003</p>
<p>Zhang, T.Y. (2003) <em>Flora fungorum sinicorum, Alternaria</em>, vol 16, 1st edn. Beijing, pp. 55–61.</p>