Abstract
A new species from the Qinghai-Tibetan Plateau is described and illustrated. Rhodiola yushuensis S.Y. Meng et J. Zhang sp. nov. is similar to Rhodiola smithii (Hamet) S. H. Fu, but it differs in its inner caudex leaves with obvious petioles and the leaf blades are obovate-triangular (vs. inner caudex leaves with strongly descends to the base of the petiole, and the leaves are long linear) and the outer caudex leaves are scalelike, triangular-suborbicular (vs. scalelike, narrowly triangular). Principal component analysis (PCA) analysis of the leaf traits and seed coat architecture also showed that R. yushuensis can be separated from R. smithii. The nrDNA internal transcribed spacer (ITS) sequences also support the claim that this plant is a new species, and it is grouped with R. smithii.
References
<p>Fu, S.H. & Fu, K.T. (1984) Crassulaceae. <em>In</em>: Chen, W.Q. & Ruan, Y.Z. (Eds.) <em>Flora Reipublicae Popularis Sinicae.</em> Science Press, Beijing, pp. 31–220.</p>
<p>Fu, K.T. & Ohba, H. (2001) Crassulaceae. <em>In</em>: Wu, C.Y. & Raven, P.H. (Eds.) <em>Flora of China</em>. Science Press, Beijing, pp. 202–268.</p>
<p>Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. <em>Systematic Biology</em> 52: 696–704. https://doi.org/10.1080/10635150390235520</p>
<p>Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. <em>Molecular Biology and Evolution </em>35: 518–522. https://doi.org/10.1093/molbev/msx281</p>
<p>Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. <em>Molecular Biology and Evolution</em> 33: 1870–1874. https://doi.org/10.1093/molbev/msw054</p>
<p>Li, Z.H., Xiao, R., Pan, C.D., Jiang, D.A. & Wang, Q. (2016) Morphological characteristics, distribution, secondary metabolites and biological activities of <em>Rhodiola</em> L. <em>Mini-Reviews in Organic Chemistry</em> 13: 389–401. https://doi.org/10.2174/1570193X13666161017142011</p>
<p>Mayuzumi, S. & Ohba, H. (2004) The phylogenetic position of eastern Asian Sedoideae (Crassulaceae) inferred from chloroplast and nuclear DNA sequences. <em>Systematic Botany</em> 29: 587–598. https://doi.org/10.1600/0363644041744329</p>
<p>Miller, M.A. Pfeiffer, W. & Schwartz, T. (2010) <em>Creating the CIPRES Science Gateway for inference of large phylogenetic trees.</em> 2010 Gateway Computing Environments Workshop, New Orleans, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129</p>
<p>Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. <em>Molecular Biology and Evolution</em> 32: 268–274. https://doi.org/10.1093/molbev/msu300</p>
<p>Rohloff, J. (2002) Volatiles from rhizomes of <em>Rhodiola rosea</em> L. <em>Phytochemistry</em> 59: 655–661. https://doi.org/10.1016/s0031-9422(02)00004-3</p>
<p>Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. <em>Systematic Biology</em> 61: 539–542. https://doi.org/10.1093/sysbio/sys029</p>
<p>Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T. & Eliceiri, K.W. (2017) ImageJ2: ImageJ for the next generation of scientific image data. <em>BMC Bioinformatics </em>18: 529. https://doi.org/10.1186/s12859-017-1934-z</p>
<p>Sharma, P. & Misra, K. (2018) <em>Rhodiola</em> sp.: The herbal remedy for high-altitude problems, <em>In</em>: Misra, K., Sharma, P. & Bhardwaj, A. (Eds.) <em>Management of High-Altitude Pathophysiology</em>. Academic Press, New York, pp. 81–92.</p>
<p>Sukumaran, J. & Mark, T.H. (2010) DendroPy: A Python library for phylogenetic computing. <em>Bioinformatics </em>26: 1569–1571. https://doi.org/10.1093/bioinformatics/btq228</p>
<p>Thiede, J. & Eggli, U. (2007) Crassulaceae. <em>In</em>: Kubitzki, K. (Ed.) <em>Flowering Plants · Eudicots. The Families and Genera of Vascular Plants</em>. Springer, Heidelberg, pp. 83–118. https://doi.org/10.1007/978-3-540-32219-1_12</p>
<p>Wang, Z.M., Meng, S.Y. & Rao, G.Y. (2019) Quaternary climate change and habitat preference shaped the genetic differentiation and phylogeography of <em>Rhodiola</em> sect. <em>prainia</em> in the southern Qinghai-Tibetan Plateau. <em>Ecology and Evolution </em>9: 8305–8319. https://doi.org/10.1002/ece3.5406</p>
<p>White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.<em> In</em>: Innis, M., Gelfand, D., Sninsky, J. & White, T. (Eds.) <em>PCR Protocols: A Guide to Methods and Applications.</em> Academic Press, San Diego, pp. 315–322.</p>
<p>Zhang, J.Q., Meng, S.Y., Wen, J. & Rao, G.Y. (2014a) Phylogenetic relationships and character evolution of <em>Rhodiola</em> (Crassulaceae) based on nuclear ribosomal ITS and plastid <em>trnL-F</em> and <em>psbA-trnH</em> sequences.<em> Systematic Botany</em> 39: 441–451. https://doi.org/10.1600/036364414x680753.</p>
<p>Zhang, J.Q., Meng, S.Y., Allen, G.A., Wen, J. & Rao, G.Y. (2014b) Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage <em>Rhodiola</em> (Crassulaceae). <em>Molecular Phylogenetics and Evolution </em>77: 147–158. https://doi.org/10.1016/j.ympev.2014.04.013</p>
<p>Zhang, J.Q., Meng, S.Y. & Rao, G.Y. (2015) Two new species of<em> Rhodiola</em> (Crassulaceae) from the Qinghai-Tibetan Plateau. <em>Phytotaxa</em> 224: 159–172. https://doi.org/10.11646/phytotaxa.224.2.3</p>