Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-05-19
Page range: 147-157
Abstract views: 195
PDF downloaded: 1

Trichoderma bombaxalis sp. nov., isolated from rhizosphere soils of Lycium barbarum

School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, P.R.China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, P.R. China
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
cellulase morphology new species phylogeny Fungi

Abstract

Trichoderma bombaxalis isolated from rhizosphere soils of five-year-old Lycium barbarum is described as a novel species. A combined approach is used to characterize T. bombaxalis including cultural and microscopic features, and phylogenetic analyses of the cascaded dataset of internal transcribed spacer (ITS) regions, RNA polymerase II subunit (RPB2), and the translation elongation factor 1-α gene (TEF1-α). The phylogeny reveals that T. bombaxalis belongs to section Hypocreanum, and is closely related to T. austriacum, T. eucorticoides, T. sulphureum, T. subsulphureum and T. victoriense, but represents a novel taxon. These fungi are characterized by often producing verticillium-like conidiophores and ellipsoidal conidia. Distinctions between the new species and its close relatives are compared and discussed. The ability of T. bombaxalis to degrade cellulose and hemicellulose is also estimated.

References

Cai, F. & Druzhinina, I.S. (2021) In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity 107: 1–69. https://doi.org/10.1007/s13225-020-00464-4

Carbone, I & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556. https://doi.org/10.1080/00275514.1999.12061051

Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17 (4): 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

Chaverri, P., Castlebury, L.A., Samuels, G.J. & David, M.G. (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Molecular Phylogenetics and Evolution 27 (2): 302–313. https://doi.org/10.1016/S1055-7903(02)00400-1

Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T. & Samuels, G.J. (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107 (3): 558–590. https://doi.org/10.3852/14-147

du Plessis, I.L., Druzhinina, I.S., Atanasova, L., Yarden, O. & Jacobs, K. (2018) The diversity of Trichoderma species from soil in South Africa, with five new additions. Mycologia 110: 559–583. https://doi.org/10.1080/00275514.2018.1463059

Edwards, J.C., Johnson, C., Santos-Medellin, E.L., Podishetty, N.K., Bhatnagar, S., Eisen, J.A. & Sundaresan, V. (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America 112: E911-20. https://doi.org/10.1073/pnas.1414592112

Ferreira, F.V., Herrmann-Andrade, A.M., Calabrese, C.D., Bello, F., Vazquez, D. & Musumeci, M.A. (2020) Effectiveness of Trichoderma strains isolated from the rhizosphere of citrus tree to control Alternaria alternata, Colletotrichum gloeosporioides and Penicillium digitatum A21 resistant to pyrimethanil in post-harvest oranges (Citrus sinensis L. (Osbeck)). Journal of Applied Microbiology 129: 712–727. https://doi.org/10.1111/jam.14657

Gu, X., Wang, R., Sun, Q., Wu, B. & Sun, J.Z. (2020) Four new species of Trichoderma in the Harzianum clade from northern China. MycoKeys 73: 109–132. https://doi.org/10.3897/mycokeys.73.51424

Guzman-Guzman, P., Porras-Troncoso, M.D., Olmedo-Monfil, V. & Herrera-Estrella, A. (2019) Trichoderma species: versatile plant symbionts. Phytopathology 109: 6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW

Jaklitsch, W.M. (2009) European species of Hypocrea Part I. The green-spored species. Studies in Mycology 63: 1–91. https://doi.org/10.3114/sim.2009.63.01

Jaklitsch, W.M. (2011) European species of Hypocrea part II: species with hyaline ascospores. Fungal Diversity 48: 1–250. https://doi.org/10.1007/s13225-011-0088-y

Jaklitsch, W.M., Komon, M., Kubicek, C.P. & Druzhinina, I.S. (2017) Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia 97: 1365–1378. http://doi.org/10.1080/15572536.2006.11832743

Jang, S., Jang, Y., Kim, C.W., Lee, H., Hong, J.H., Heo, Y.M., Lee, Y.M., Lee, D.W., Lee, H.B. & Kim, J.J. (2017) Five new records of soil-derived Trichoderma in Korea: T. albolutescens, T. asperelloides, T. orientale, T. spirale, and T. tomentosum. Mycobiology 45: 1–8. https://doi.org/10.5941/MYCO.2017.45.1.1

Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Liu, B., Ji, S., Zhang, H., Wang, Y. & Liu, Z. (2020) Isolation of Trichoderma in the rhizosphere soil of Syringa oblata from Harbin and their biocontrol and growth promotion function. Microbiological Research 235: 126445. https://doi.org/10.1016/j.micres.2020.126445

Liu, J.J., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Na, X.F, Ma, S., Ma, C., Liu, Z., Xu, P., Zhu, H., Liang, W. & Kardol, P. (2021) Lycium barbarum L. (goji berry) monocropping causes microbial diversity loss and induces Fusarium spp. enrichment at distinct soil layers. Applied Soil Ecology 168: 104–107. https://doi.org/10.1016/j.apsoil.2021.104107

Nandini, B., Puttaswamy, H., Saini, R.K., Prakash, H.S. & Geetha, N. (2021) Trichovariability in rhizosphere soil samples and their biocontrol potential against downy mildew pathogen in pearl millet. Scientifc Reports 11: 9517. https://doi.org/10.1038/s41598-021-89061-2

Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Available from: https://github.com/nylander/MrModeltest2

Overton, B.E., Stewart, E.L. & Geiser, D.M. (2006) Taxonomy and phylogenetic relationships of nine species of Hypocrea with an amorphs assignable to Trichoderma section Hypocreanum. Studies in Mycology 56: 39–65. https://doi.org/10.3114/sim.2006.56.02

Peciulyte, A., Anasontzis, G.E., Karlström, K., Larsson, P.T. & Olsson, L. (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genetics and Biology 72: 64–72. https://doi.org/10.1016/j.fgb.2014.07.011

Rambaut, A. (2012) FigTree version 1.4.0. Program distributed by the author. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accessed 18 May 2022)

Riley, D. & Barber, S.A. (1970) Salt accumulation at the soybean (Glycine max ( L. ) Merr.) root-soil interface. Soil Science Society of America Journal 34 (1): 154–155. https://doi.org/10.2136/sssaj1970.03615995003400010042x

Ronquist, F., Teslenko, M., Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Ryu, S.M., Lee, H.M., Song, E.G., Seo, Y.H., Lee, J., Guo, Y., Kim, B.S., Kim, J.J., Hong, J.S., Ryu, K.H. & Lee, D. (2017) Antiviral activities of trichothecenes isolated from Trichoderma albolutescens against pepper mottle virus. Journal of Agricultural and Food Chemistry 65: 4273–4279. https://doi.org/10.1021/acs.jafc.7b01028

Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446

Strakowska, J., B?aszczyk, L. & Che?kowski, J. (2014) The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. Journal of Basic Microbiology 54: S2–S13. https://doi.org/10.1002/jobm.201300821

Swain, H., Adak, T., Mukherjee, A.K., Mukherjee, P.K., Bhattacharyya, P., Behera, S., Bagchi, T.B., Patro, R., Khandual, A., Bag, M.K., Dangar, T.K. & Jena, M. (2018) Novel Trichoderma strains isolated from tree barks as potential biocontrol agents and biofertilizers for direct seeded rice. Microbiological Research 214: 83–90. https://doi.org/10.1016/j.micres.2018.05.015

White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR Protocols: a Giude to Methods and Application. Academic Press, San Diego, USA, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Zhang, J.H., Li, M., Jia, K.L., Zheng, G.Q. & Long, X.E. (2018) Seasonal variation rather than stand age determines bacterial diversity in the rhizosphere of wolfberry (Lycium barbarum L.) associated with soil degradation. Journal of Soils and Sediments 18: 1518–1529. https://doi.org/10.1007/s11368-017-1854-6

Zhang, R. & Wang, D. (2012) Trichoderma spp. from rhizosphere soil and their antagonism against Fusarium sambucinum. African Journal of Biotechnology 11 (18): 4180–4186. https://dx.doi.org/10.5897/ajb11.3426

Zhang, Y.J., Zhang, S., Liu, X.Z., Wen, H.A. & Wang, M. (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Letters in Applied Microbiology 51: 114–118. https://doi.org/10.1111/j.1472-765X.2010.02867.x

How to Cite

Yu, S., Wang, R., Liu, H.-W., Zhang, X. & Sun, J.-Z. (2022)

Trichoderma bombaxalis sp. nov., isolated from rhizosphere soils of Lycium barbarum

. Phytotaxa 547 (2): 147–157. https://doi.org/10.11646/phytotaxa.547.2.2