Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-03-08
Page range: 213-224
Abstract views: 38
PDF downloaded: 1

Two new species of Hypoxylon (Hypoxylaceae) from China based on morphological and DNA sequence data analyses

College of Plant Protection, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Jilin 130118, China; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
College of Plant Protection, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Jilin 130118, China
Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
College of Plant Protection, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Jilin 130118, China
Ascomycota Biodiversity Hypoxylaceae Multi-gene Phylogeny Taxonomy Fungi

Abstract

Two new species, Hypoxylon larissae and Hypoxylon jianfengense, are described and illustrated on the basis of a combination of morphological and molecular characters from China. Hypoxylon larissae was collected from southwest China (Yunnan province), while H. jianfengense was collected from southern China (Hainan province). Hypoxylon larissae is characterized by effused-pulvinate stromata, Orange (7) and Luteous (12) pigments extracted in 10% KOH and light brown to dark brown ascospores with straight germ slit. It is phylogenetically and morphologically closely related to H. fenderi. Hypoxylon jianfengense is distinguished by tubular to long tubular perithecia, Dark Green (21), Isabelline (65) and Dull Green (70) pigments extracted in 10% KOH and conspicuous coil-like perispore ornamentation. Hypoxylon jianfengense clustered with H. invadens and H. trugodes in a well-supported clade. Phylogenetic analyses of multi-gene sequences (ITS-LSU-RPB2-TUB2) support the recognition of the taxa as distinct.

References

<p>Becker, K., Lambert, C., Wieschhaus, J. &amp; Stadler, M. (2020) Phylogenetic assignment of the fungicolous <em>Hypoxylon invadens</em> (Ascomycota, Xylariales) and investigation of its secondary metabolites. <em>Microorganisms</em> 8: 1–14. https://doi.org/10.3390/microorganisms8091397</p>
<p>Bills, G.F., González-Menéndez, V., Martín, J., Platas, G., Fournier, J., Peršoh, D. &amp; Stadler, M. (2020) <em>Hypoxylon pulicicidum</em> sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. <em>PLOS ONE</em> 7: e46687.&nbsp; https://doi.org/10.1371/journal.pone.0046687</p>
<p>Bitzer, J., Læssøe, T., Fournier, J., Kummer, V., Decock, C., Tichy, H.V., Piepenbring, M., Peršoh, D. &amp; Stadler, M. (2008) Affinities of <em>Phylacia </em>and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. <em>Mycological Research</em> 112: 251–270.&nbsp; https://doi.org/10.1016/j.mycres.2007.07.004</p>
<p>Capella-Gutiérrez, S., Silla-Martínez, J.M. &amp; Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. <em>Bioinformatics</em> 25: 1972–1973.&nbsp; https://doi.org/10.1093/bioinformatics/btp348.</p>
<p>Cedeño–Sanchez, M., Wendt, L., Stadler, M. &amp; Mejía, L.C. (2020) Three new species of <em>Hypoxylon </em>and new records of Xylariales from Panama. <em>Mycosphere </em>11: 1457–1476.&nbsp; https://doi.org/10.5943/mycosphere/11/1/9</p>
<p>Chi, S.Q., Xu, J., Lv, B.S. &amp; Jing, J. (2016) Three New Chinese records of <em>Hypoxylon</em>. <em>Journal of Fungal Research</em> 14: 218–221. https://doi.org/10.13341/j.jfr.2014.1138</p>
<p>Dai, D.Q., Phookamsak, R., Wijayawardene, N.N., Li, W.J., Bhat, D.J., Xu, J.C., Taylor, J.E., Hyde, K.D. &amp; Chukeatirote, E. (2017) Bambusicolous fungi. <em>Fungal Diversity </em>82, 1–105.</p>
<p>Daranagama, D.A., Camporesi, E., Tian, Q., Liu, X., Chamyuang, S., Stadler, M. &amp; Hyde, K.D. (2015) <em>Anthostomella </em>is polyphyletic comprising several genera in Xylariaceae.<em> Fungal Diversity </em>73: 203–238.&nbsp; https://doi.org/10.1007/s13225-015-0329-6</p>
<p>Daranagama, D.A., Hyde, K.D., Sir, E.B., Thambugala, K.M., Tian, Q., Samarakoon, M.C., McKenzie, E.H.C., Jayasiri, S.C., Tibpromma, S., Bhat, J.D., Liu, X.Z. &amp; Stadler, M. (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. <em>Fungal Diversity</em> 88: 1–165.&nbsp; https://doi.org/10.1007/s13225-017-0388-y</p>
<p>Eo, J.K., Choi, M.S. &amp; Eom, A.H. (2014) Diversity of endophytic fungi isolated from Korean ginseng leaves. <em>Mycobiology </em>42: 147–151.&nbsp; https://doi.org/10.5941/MYCO.2014.42.2.147</p>
<p>Felsenstein, J. (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. <em>Journal of Molecular Evolution</em> 17: 368–376.&nbsp; https://doi.org/10.1007/BF01734359</p>
<p>Fournier, J. (2014) Two new species of <em>Hypoxylon </em>(Xylariaceae) from French Central Pyrenees occurring on <em>Fagus sylvatica</em>. <em>Ascomycete.org</em> 6: 53–60.</p>
<p>Fournier, J. &amp; Lechat, C. (2015) New, rarely recorded and unsettled species of <em>Hypoxylon </em>( Xylariaceae ) from French Guiana. <em>Ascomycete.org</em> 2: 63–96.</p>
<p>Gardes, M. &amp; Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. <em>Molecular Ecology</em> 2: 113–118.&nbsp; https://doi.org/10.1111/j.1365-294X.1993.tb00005.x</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41: 95–98.</p>
<p>Hsieh, H., Ju, Y.M., Rogers, J.D., Hsieh, H. &amp; Rogers, J.D. (2005) Molecular phylogeny of <em>Hypoxylon </em>and closely related genera. <em>Mycologia</em> 97: 844–865. https://doi.org/10.1080/15572536.2006.11832776</p>
<p>Hsieh, H., Lin, C., Fang, M., Rogers, J.D., Fournier, J., Lechat, C. &amp; Ju, Y.M. (2010) Phylogenetic status of<em> Xylaria </em>subgenus <em>Pseudoxylaria </em>among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. <em>Molecular Phylogenetics and Evolution</em> 54: 957–969.&nbsp; https://doi.org/10.1016/j.ympev.2009.12.015</p>
<p>Huelsenbeck, J.P., Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. <em>Bioinformatics </em>17: 754–755.</p>
<p>Hyde, K.D., Norphanphoun, C., Maharachchikumbura, S.S.N., Bhat, D.J., Jones, E.B.G., Bundhun, D., Chen, Y.J., Bao, D.F., Boonmee, S., Calabon, M.S., Chaiwan, N., Chethana, K.W.T., Dai, D.Q., Dayarathne, M.C., Devadatha, B., Dissanayake, A.J., Dissanayake, L.S., Doilom, M., Dong, W., Fan, X.L., Goonasekara, I.D., Hongsanan, S., Huang, S.K., Jayawardena, R.S., Jeewon, R., Karunarathna, A., Konta, S., Kumar, V., Lin, C.G., Liu, J.K., Liu, N.G., Luangsa-ard, J., Lumyong, S.4, Luo, Z.L., Marasinghe, D.S., McKenzie, E.H.C., Niego, A.G.T., Niranjan, M., Perera, R.H., Phukhamsakda, C., Rathnayaka, A.R., Samarakoon, M.C., Samarakoon, S.M.B.C., Sarma, V.V., Senanayake, I.C., Shang, Q.J., Stadler, M., Tibpromma, S., Wanasinghe, D.N., Wei, D.P., Wijayawardene, N.N., Xiao, Y.P., Yang, J., Zeng, X.Y., Zhang, S.N., Xiang, M.M. (2020) Refined families of Sordariomycetes. <em>Mycosphere </em>11: 305–1059. https://doi.org/10.5943/mycosphere/11/1/7</p>
<p>Ju, Y.M. &amp; Rogers, J.D. (1996) <em>A revision of the genus Hypoxylon</em>. American Phytopathological Society Press, St. Paul, Minnesota.</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20: 1160–1166.&nbsp; https://doi.org/10.1093/bib/bbx108</p>
<p>Kuhnert, E., Fournier, J., Per, D., Luangsaard, J.J.D. &amp; Stadler, M. (2014) New <em>Hypoxylon </em>species from Martinique and new evidence on the molecular phylogeny of <em>Hypoxylon </em>based on ITS rDNA and β-tubulin data. <em>Fungal Diversity</em> 64: 181–203.&nbsp; https://doi.org/10.1007/s13225-013-0264-3</p>
<p>Kuhnert, E., Surup, F., Sir, E.B., Lambert, C., Hyde, K.D., Hladki, A.I., Romero, A.I. &amp; Stadler, M. (2015) Lenormandins A—G, new azaphilones from <em>Hypoxylon lenormandii</em> and <em>Hypoxylon jaklitschii</em> sp. nov., recognised by chemotaxonomic data. <em>Fungal Diversity </em>71: 165–184.&nbsp; https://doi.org/10.1007/s13225-014-0318-1</p>
<p>Kuhnert, E., Sir, E.B., Lambert, C., Hyde, K.D., Hladki, A,I., Romero, A.I., Rohde, M. &amp; Stadler, M. (2017) Phylogenetic and chemotaxonomic resolution of the genus <em>Annulohypoxylon</em> (Xylariaceae) including four new species. <em>Fungal Diversity</em> 85: 1–43.&nbsp; https://doi.org/10.1007/s13225-016-0377-6</p>
<p>Lambert, C., Wendt, L., Hladki, A.I., Stadler, M. &amp; Sir, E.B. (2019) <em>Hypomontagnella </em>(Hypoxylaceae): a new genus segregated from <em>Hypoxylon </em>by a polyphasic taxonomic approach. <em>Mycological Progress</em> 18: 187–201.&nbsp; https://doi.org/10.1007/s11557-018-1452-z</p>
<p>Liu, Y.J., Whelen, S. &amp; Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. <em>Molecular Biology and Evolution</em> 16: 1799–1808.&nbsp; https://doi.org/10.1093/oxfordjournals.molbev.a026092</p>
<p>Ma, H.X. &amp; Li, Y. (2018) <em>Xylaria crinalis </em>and<em> X. betulicola</em> from China – Two new species with thread-like stromata. <em>Sydowia</em> 70: 37–49.&nbsp; https://doi.org/10.12905/0380.sydowia70-2018-0037</p>
<p>Ma, H.X., Qiu, J.Z., Xu, B. &amp; Li, Y. (2018) Two <em>Hypoxylon </em>species from Yunnan Province based on morphological and molecular characters. <em>Phytotaxa</em> 376: 027–036. https://doi.org/10.11646/phytotaxa.376.1.3</p>
<p>O’donnell, K. &amp; Cigelnik, E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus <em>Fusarium </em>are nonorthologous. <em>Molecular Phylogenetics and Evolution</em> 7: 103–116. https://doi.org/10.1006/mpev.1996.0376</p>
<p>Peng, M.K., Zhang, B., Qu, Z., Li, Y. &amp; Ma, H.X. (2021) New record genus and a new species of <em>Allodiatrype </em>from China based on morphological and molecular characters. <em>Phytotaxa </em>500: 275–284 https://doi.org/10.11646/phytotaxa.500.4.3</p>
<p>Pi, Y.H., Zhang, X., Liu, L.L., Long, Q.D., Shen, X.C., Kang, Y.Q., Hyde, K.D., Boonmee, S., Kang, J.C. &amp; Li, Q.R. (2020) Contributions to species of Xylariales in&nbsp;China—4.&nbsp;<em>Hypoxylon&nbsp;wujiangensis&nbsp;</em>sp. nov.&nbsp;<em>Phytotaxa&nbsp;</em>455: 21–30. https://doi.org/10.11646/phytotaxa.455.1.3</p>
<p>Pourmoghaddam, M.J., Lambert, C., Surup, F., Khodaparast, S.A., Krisai-Greilhuber, I., Voglmayr, H. &amp; Stadler, M. (2020) Discovery of a new species of the <em>Hypoxylon rubiginosum</em> complex from Iran and antagonistic activities of <em>Hypoxylon </em>spp. against the Ash Dieback pathogen, <em>Hymenoscyphus fraxineus</em>, in dual culture. <em>MycoKeys </em>66: 105–133.&nbsp; https://doi.org/10.3897/MYCOKEYS.66.50946</p>
<p>Rogers, J.D. (2000) Thoughts and musings on tropical Xylariaceae. <em>Mycological Research</em> 104: 1412–1420.</p>
<p>Rayner, R.W. (1970) <em>A mycological colour chart</em>. Commonwealth Mycological Institute, Kew and British Mycological Society.</p>
<p>Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. &amp; Huelsenbeck, J.P. (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. <em>Systematic Biology</em> 61: 539–542.&nbsp; https://doi.org/10.1093/sysbio/sys029</p>
<p>Sir, E.B., Becker, K., Lambert, C., Bills, G.F. &amp; Kuhnert, E. (2019) Observations on Texas hypoxylons, including two new <em>Hypoxylon </em>species and widespread environmental isolates of the <em>H. croceum</em> complex identified by a polyphasic approach. <em>Mycologia </em>11: 832–856.&nbsp; https://doi.org/10.1080/00275514.2019.1637705</p>
<p>Sir, E.B., Kuhnert, E., Lambert, C., Hladki, A.I., Romero, A.I. &amp; Stadler, M. (2016) New species and reports of <em>Hypoxylon </em>from Argentina recognized by a polyphasic approach. <em>Mycological Progress</em> 15: 42.&nbsp; https://doi.org/10.1007/s11557-016-1182-z</p>
<p>Sir, E.B., Kuhnert, E., Surup, F., Hyde, K.D. &amp; Stadler, M. (2015) Discovery of new mitorubrin derivatives from<em> Hypoxylon fulvo-sulphureum</em> sp. nov. (Ascomycota, Xylariales). <em>Mycological Progress </em>14.&nbsp; https://doi.org/10.1007/s11557-015-1043-1</p>
<p>Stadler, M., Kuhnert, E., Peršoh, D. &amp; Fournier, J. (2013) The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept. <em>Mycology </em>4: 5–21.&nbsp; https://doi.org/10.1080/21501203.2013.782478</p>
<p>Stadler, M., Læssøe, T., Fournier, J., Decock, C., Schmieschek, B., Tichy, H.V. &amp; Peršoh, D. (2014) A polyphasic taxonomy of <em>Daldinia </em>(Xylariaceae). <em>Studies in Mycology</em> 77: 1–143.&nbsp; https://doi.org/10.3114/sim0016</p>
<p>Suwannasai, N., Rodtong, S., Thienhirun, S. &amp; Whalley, A. (2005) New species and phylogenetic relationships of <em>Hypoxylon </em>species found in Thailand inferred from the internal transcribed spacer regions of ribosomal dna sequences. <em>Mycotaxon </em>94: 303–324.</p>
<p>Swofford, D.L. (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). version 4. Sinauer Associates, Sunderland, MA. https://doi.org/10.1111/j.0014-3820.2002.tb00191.x</p>
<p>Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. &amp; Kumar, S. (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. <em>Molecular Biology and Evolution</em> 28: 2731–2739.&nbsp; https://doi.org/10.1093/molbev/msr121</p>
<p>Torre-Almaráz, R.D.L., Cota, T.F.M. &amp; Martín, F.S. (2003) First Report of <em>Hypoxylon diatrypeoides </em>inducing dieback and black trunk rot on Mesquite (<em>Prosopis laevigata</em>) in Mexico. <em>Plant disease</em> 87: 447.&nbsp; https://doi.org/10.1094/PDIS.2003.87.4.447C</p>
<p>Vilgalys, R. &amp; Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several <em>Cryptococcus</em> species. <em>Journal of Bacteriology</em> 172: 4238–4246.&nbsp; https://doi.org/10.1128/jb.172.8.4238-4246.1990</p>
<p>Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J.Z., Cardinali, G., Houbraken, J., Boekhout, T., Crous, P.W., Robert, V. &amp; Verkley, G.J.M. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. <em>Studies in Mycology</em> 92: 135–154.&nbsp; https://doi.org/10.1016/j.simyco.2018.05.001</p>
<p>Wendt, L., Sir, E.B., Kuhnert, E., Heitkämper, S., Lambert, C., Hladki, A.I., Romero, A.I., Luangsaard, J.J., Srikitikulchai, P., Per, D. &amp; Stadler, M. (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. <em>Mycological Progress</em> 17: 115–154.&nbsp; https://doi.org/10.1007/s11557-017-1311-3</p>
<p>Whalley, A.J.S. &amp; Whalley, M.A. (1977) Stromal pigments and taxonomy of <em>Hypoxylon</em>. <em>Mycopathologia </em>61: 99–103. https://doi.org/10.1007/BF00443837</p>
<p>White, T.J., Bruns, T., Lee, S. &amp; Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. <em>In: PCR protocols: a guide to methods and applications</em>. Academic Press, San Diego, California, pp. 315–322.&nbsp; https://doi.org/10.1016/B978-0-12-372180-8.50042-1</p>