Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-03-08
Page range: 182-196
Abstract views: 111
PDF downloaded: 3

Assessment of SCoT and ISSR molecular markers in genetic diversity of rigid ryegrass (Lolium rigidum Gaud.) in Iran

Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration, Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, P.O Box 416, Chengdu, Sichuan 610041, China. ; University of Chinese Academy of Science, Beijing 100049, China
Conservation Gene flow Genetic diversity ISSR Lolium rigidum SCoT Monocots

Abstract

Lolium rigidum (Poaceae) is important forage and weed species grown in different habitats of Iran. Rigid ryegrass originated from the Mediterranean region. They are very resistant to common herbicides. To investigate the genetic variability of L. rigidum, we studied 81 individuals of 18 natural populations from Iran; four ISSR and four SCoT primers were used. These are reproducible and highly polymorphic markers. We examined their gene flow and genetic variation. Genetic diversity among and within populations was determined through different methods. The Mantel test indicated a significant correlation between these populations’ genetic distance and geographical distance and a high correlation between ISSR and SCoT markers. Analyses of molecular variance (AMOVA) produced high genetic differences among the studied populations for both markers. Structure analysis showed population genetic stratification and identified three genetic groups through ISSR molecular markers for L. rigidum in Iran and indicated restricted gene flow. The current investigation revealed the productivity of ISSR and SCoT molecular markers in evaluating genetic variation and grouping of wild populations of L. rigidum and provides detailed data concerning the genetic structure of its populations. The present finding provided useful information for further conservation, selection, and breeding plans.

References

<p>Abbaszade, S., Jafari, A.A., Safari, H. &amp; Shirvani, H. (2013) Genetic diversity of <em>Lolium multiflorum</em> accessions using ISSR molecular markers. <em>International Journal of Farming and Allied Sciences</em> 22: 1217–1222.</p>
<p>Abdel-Lateif, K.S. &amp; Hewedy, O.A. (2018) Genetic diversity among Egyptian wheat cultivars using SCoT and ISSR markers. <em>Journal of Animal Breeding and Genetics</em> 50: 36–45.</p>
<p>Alcántara-de la Cruz, R., Fernández-Moreno, P.T., Ozuna, C.V., Rojano-Delgado, A.M., Cruz-Hipolito, H.E., Domínguez-Valenzuela, J.A., Barro, F. &amp; De Prado, R. (2016) Target and non-target site mechanisms developed by glyphosate-resistant hairy beggarticks (<em>Bidens pilosa</em> L.) populations from Mexico. <em>Frontiers in Plant Science</em> 7: 1492.&nbsp; https://doi.org/10.3389/fpls.2016.01492</p>
<p>Al-Qurainy, F., Khan, S., Nadeem, M. &amp;Tarroum, M. (2015) SCoT marker for the assessment of genetic diversity in Saudi Arabian date palm cultivars. <em>Pakistan Journal of Botany </em>47: 637–643.</p>
<p>Amin, A.K., El-Fayoumi, H.H., Mohamed, N.H., Tawfik, R.S., Allam, M. &amp; Karam, M.A. (2017) Relationships among some regional species of the genus <em>Lolium</em> L. based on morphological and molecular markers. <em>International Journal of Current Research</em> 3: 1333–1363.</p>
<p>Balfourier, F., Charmet, G. &amp; Ravel, C. (1998) Genetic differentiation within and between natural populations of perennial and annual ryegrass (<em>Lolium perenne </em>and<em> L. rigidum</em>). <em>Heredity</em> 81: 100–110.</p>
<p>Collard, B.C. &amp; Mackill, D.J. (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. <em>Plant Molecular Biology Reporter</em> 27: 86.&nbsp; https://doi.org/10.1007/s11105-008-0060-5</p>
<p>Costa, R., Pereira, G., Garrido, I., Tavares-de-Sousa, M.M. &amp; Espinosa, F. (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify Orchardgrass (<em>Dactylis glomerata</em> L.) germplasm variations. <em>PloS one</em> 11: e0152972.&nbsp; https://doi.org/10.1371/journal. pone0152972</p>
<p>Essadki, M., Ouazzani, N., Lumaret, R. &amp; Moumni, M. (2006) ISSR variation in Olive-tree cultivars from Morocco and other western countries of the Mediterranean Basin. <em>Genetic Resources and Crop Evolution </em>53: 475–482. &nbsp;https://doi.org/10.1007/s10722-004-1931-8</p>
<p>Evanno, G., Regnaut, S. &amp; Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. <em>Molecular Ecology</em> 14: 2611–2620. &nbsp;https://doi.org/10.1111/j.1365-294X.2005.02553.x</p>
<p>Fasih, Z., Farshadfar, M. &amp; Safari, H. (2013) Genetic diversity evaluation of within and between populations for <em>Festuca arundinacea</em> by ISSR markers<em>. International Journal of Agriculture and Crop Sciences</em> 5: 1468–1472.</p>
<p>Fernández-Moreno, P.T., Bastida, F. &amp; De Prado, R. (2017a) Evidence, mechanism and alternative chemical seedbank-level control of glyphosate resistance of a rigid ryegrass (<em>Lolium rigidum</em>) biotype from Southern Spain<em>. Frontiers in Plant Science</em> 8: 450.</p>
<p>Fernández-Moreno, P.T., Travlos, I., Brants, I. &amp; De Prado, R. (2017b) Different levels of glyphosate-resistant <em>Lolium rigidum</em> L. among major crops in southern Spain and France. <em>Scientific Reports </em>7: 1–12.</p>
<p>Friedman, J. &amp; Barrett, S.C. (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. <em>Annals of Botany</em> 103: 1515–1527.</p>
<p>Ghariani, S., Elazreg, H., Chtourou-Ghorbel, N., Chakroun, M. &amp; Trifi-Farah, N. (2015) Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers. <em>Genetics and Molecular Research</em> 14: 18523-18533. https://doi.org/10.4238/2015.december.23.40</p>
<p>Goggin, D.E., Powles, S.B. &amp; Steadman, K.J. (2012) Understanding <em>Lolium rigidum</em> seeds: the key to managing a problem weed? <em>Agronomy</em> 2: 222–239. &nbsp;https://doi.org/10.3390/agronomy2030222</p>
<p>González-Andújar, J.L. &amp; Fernández-Quintanilla, C. (2004) Modelling the population dynamics of annual ryegrass (<em>Lolium rigidum</em>) under various weed management systems. <em>Crop Protection</em> 23: 723–729. &nbsp;https://doi.org/10.1016/j.cropro.2003.12.007</p>
<p>Gorddard, R.J., Pannell, D.J. &amp; Hertzler, G. (1996) Economic evaluation of strategies for management of herbicide resistance. <em>Agricultural Systems</em> 51: 281–298. &nbsp;https://doi.org/10.1016/0308-521X(95)00047-9</p>
<p>Guan, X., Yuyama, N., Stewart, A., Ding, C., Xu, N., Kiyoshi, T. &amp; Cai, H. (2017) Genetic diversity and structure of <em>Lolium</em> species surveyed on nuclear simple sequence repeat and cytoplasmic markers. <em>Frontiers in Plant Science</em> 8: 584. &nbsp;https://doi.org/10.3389/fpls.2017.00584</p>
<p>Guo, J., Yu, X., Yin, H., Liu, G., Li, A., Wang, H. &amp; Kong, L. (2016) Phylogenetic relationships of <em>Thinopyrum</em> and <em>Triticum </em>species revealed by SCoT and CDDP markers. <em>Plant Systematics and Evolution</em> 302: 1301–1309. &nbsp;https://doi.org/10.1007/s00606-016-1332-4</p>
<p>Hammer, Ø., Harper, D. &amp; Ryan, P.D. (2001) PAST: Paleontological Statistics software package for education and data analysis<em>. Palaeontologia Electronica</em> 4: 1–9.</p>
<p>Huang, C.Q., Liu, G.D., Bai, C.J., Wang, W.Q., Tang, J. &amp; Yu, D.G. (2012) Exploring the genetic diversity of <em>Cynodon radiatus</em> (Poaceae) accessions using ISSR markers. <em>Biochemical Systematics and Ecology</em> 45: 218–223.</p>
<p>Huang, X., Xinquan, Z., Linkai, H., Yingmei, M., Guohua, Y., Samantha, L., Jie, Z. &amp; Huan, L. (2014) Genetic diversity of <em>Hemarthria altissima</em> and its related species by EST-SSR and SCoT markers. <em>Biochemical Systematics and Ecology</em> 57: 338–344.&nbsp; https://doi.org/10.1016/j.bse.2014.09.016</p>
<p>Hu, T., Li, H., Li, D., Sun, J. &amp; Fu, J. (2011) Assessing genetic diversity of perennial ryegrass (<em>Lolium perenne</em> L.) from four continents by inter simple sequence repeat (ISSR) markers. <em>African Journal of Biotechnology</em> 10: 19365-19374.&nbsp; https://doi.org/10.5897/AJB11.1575</p>
<p>Inda, L.A., Segarra-Moragues, J.G., Müller, J., Peterson, P.M. &amp; Catalán, P. (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. <em>Molecular Phylogenetics and Evolution </em>46: 932–957.&nbsp; https://doi.org/10.1016/j.ympev.2007.11.022</p>
<p>Khan, N., Saudan, S. &amp; Dhawan, S. (2017) Development of species-specific SCoT markers and analysis of genetic diversity among <em>Mentha</em> genotypes. <em>International Journal of Innovative Research in Technology </em>4: 145–156.</p>
<p>Leigh, J.W. &amp; Bryant, D. (2015) POPART: full-feature software for haplotype network construction. <em>Methods in Ecology and Evolution</em> 6: 1110–1116.</p>
<p>Li, A. &amp; Ge, S. (2001) Genetic variation and clonal diversity of <em>Psammochloa villosa</em> (Poaceae) detected by ISSR markers. <em>Annals of Botany </em>87: 585–590. &nbsp;https://doi.org/10.1006/anbo.2001.1390</p>
<p>Lorenzoni, R.M., Menine, F., Júnior, E.M., Oliveira, F.L. &amp; Soares, T.C.B. (2017) Genetic diversity of yacon accessions using ISSR markers. <em>Genetics and Molecular Research</em> 16. https://doi.org/10.4238/gmr16029576</p>
<p>Mehta, A.K., Basha, M.H., Gour, V.K., Neeta, M., Biliaya, S.K. &amp; Kachare, S. (2020) <em>Genetic diversity analysis of mutant lines of oat (Avena sativa L.) based on RAPD and ISSR analysis. </em>The 23rd International Gr d International Grassland Congress (Sustainable use of Grassland Resources for for Forage Production, Biodiversity and and Environmental Protection); Nov 20-24; New Delhi, India.</p>
<p>Mohammadi, R., Panahi, B. &amp; Amiri, S. (2020) ISSR Based Study of Fine Fescue (<em>Festuca ovina</em> L.) Highlighted the Genetic Diversity of Iranian Accessions. <em>Cytology and Genetics</em> 54: 257–263. &nbsp;https://doi.org/10.3103/S0095452720030123</p>
<p>Moradkhani, H., Mehrabi, A.A., Etminan, A. &amp; Pour-Aboughadareh, A. (2015) Molecular diversity and phylogeny of <em>Triticum-Aegilops</em> species possessing D genome revealed by SSR and ISSR markers. <em>Journal of Plant Breeding and Crop Science</em> 71: 81–95.&nbsp; https://doi.org/10.1515/plass-2015-0024</p>
<p>Oshib Nataj, M., Shekarchi, H., Akbarzadeh, M. &amp; Keshavarzi, M .(2012) An autecological study of <em>Lolium</em> <em>rigidum</em> L. in Mazandaran Province. <em>Iranian Journal of Plant Physiology</em> 3: 37–46.</p>
<p>Niknam, S., Moerkerk, M. &amp; Cousens, R. (2002) Weed seed contamination in cereal and pulse crops. <em>In: </em>Spafford Jacob, H., Dodd, J. &amp; Moore, J.H. (Eds.) <em>Proceedings of the 13th Australian weeds conference.</em> Sept 8-13; Perth, Western Australia. pp. 59–62.</p>
<p>Ony, M.A., Nowicki, M., Boggess, S.L., Klingeman, W.E., Zobel, J.M., Trigiano, R.N. &amp; Hadziabdic, D. (2020) Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of <em>Cercis canadensis</em> (eastern redbud). <em>Ecology and evolution</em> 10: 3655–3670.&nbsp; https://doi.org/10.1002/ece3.6141</p>
<p>Pannell, D.J., Stewart, V., Bennett, A., Monjardino, M., Schmidt, C. &amp; Powles, S.B. (2004) RIM: a bioeconomic model for integrated weed management of <em>Lolium rigidum</em> in Western Australia.&nbsp;<em>Agricultural Systems</em> 79: 305–325. &nbsp;https://doi.org/10.1016/S0308-521X(03)00089-1</p>
<p>Peakall, R. &amp; Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. <em>Molecular Ecology Resources</em> 6: 288–295.&nbsp; https://doi.org/10.1111/j.1471-8286.2005.01155.x</p>
<p>Poczai, P., Varga, I., Laos, M., Cseh, A., Bell, N., Valkonen, H.P. &amp; Hyvönen, J. (2013) Advances in plant gene-targeted and functional markers: a review. <em>Plant Methods</em> 9: 1–32.</p>
<p>Posselt, U.K., Barre, P., Brazauskas, G. &amp; Turner, L.B. (2006) Comparative analysis of genetic similarity between perennial ryegrass genotypes investigated with AFLPs, ISSRs, RAPDs and SSRs. <em>Czech Journal of Genetics and Plant Breeding</em> 42: 87. &nbsp;https://doi.org/10.17221/3647-CJGPB</p>
<p>Prevost, A. &amp; Wilkinson, M.J. (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars.&nbsp;<em>Theoretical and applied Genetics</em>&nbsp;98: 107–112.&nbsp; https://doi.org/10.1007/s001220051046</p>
<p>Pritchard, J.K., Stephens, M., Rosenberg, N.A. &amp; Donnelly, P. (2000) Association mapping in structured populations. <em>American Journal of Human Genetics</em> 67: 170–181. &nbsp;https://doi.org/10.1086/302959</p>
<p>Safari, H., Zebarjadi, A., Kahrizi, D., Jafari, A.A. (2019) The study of inter-specific relationships of <em>Bromus</em> genus based on SCoT and ISSR molecular markers. <em>Molecular Biology Reports</em> 46: 5209–5223. &nbsp;https://doi.org/10.1007/s11033-019-04978-2</p>
<p>Sheidai, M., Moradian, P.Z., Koohdar, F. &amp; Talebi, S.M. (2018) Infra-specific morphological, anatomical and genetic variations in <em>Lallemantia peltata</em> (L.) Fisch. &amp; C. A. Mey. (Lamiaceae). <em>Acta Biologica Hungarica</em> 4: 85–93. &nbsp;https://doi.org/10.14258/abs.v4i3.4412</p>
<p>Tabaripoor, R., Sheidai, M., Talebi, S.M. &amp; Noormohammadi, Z. (2016) Population genetic diversity and structure in <em>Ziziphora tenuior</em> L.: Identification of potential gene pools. <em>Genetika</em> 48: 565–578.&nbsp; https://doi.org/10.2298/GENSR1602565T</p>
<p>Tabaripour, R. &amp; Keshavarzi, M. (2021) Interspecific Molecular Variation of <em>Lolium</em> L. Based on ISSR, SCoT and ITS. <em>Iranian Journal of Science and Technology, Transactions A</em> 45: 1263–1272.&nbsp; https://doi.org/10.1007/s40995-021-01151-y</p>
<p>Talebi, S.M., Tabaripour, R. &amp; Matsyura, A. (2021) Genetic diversity and population structure of diverse Iranian <em>Nepeta</em> L. taxa. <em>Genetic Resources and Crop Evolution </em>69: 285–296.&nbsp; https://doi.org/10.1007/s10722-021-01228-y</p>
<p>Tesfaye, K., Govers, K., Bekele, E. &amp; Borsch, T. (2014) ISSR fingerprinting of <em>Coffea arabica</em> throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces. <em>Plant Systematics and Evolution</em> 300: 881–897. &nbsp;https://doi.org/10.1007/s00606-013-0927-2</p>
<p>Tong, YW., Lewis, B.J., Zhou, W.M., Mao, C.R., Wang, Y., Zhou, L., Yu, D.P., Dai, L.M. &amp; Qi, L. (2020) Genetic diversity and population structure of natural Pinus koraiensis populations. <em>Forests</em> 11: 39.&nbsp; https://doi.org/10.3390/f11010039</p>
<p>Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K. &amp; Graner, A. (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. <em>Plant Science</em> 173: 638–649.&nbsp; https://doi.org/10.1016/j.plantsci.2007.08.010</p>
<p>Vieira, J.P.S., Schnadelbach, A.S., Hughes, F.M., Jardim, J.G., Clark, L.G. &amp; De Oliveira, R.P. (2020) Ecological niche modelling and genetic diversity of <em>Anomochloa marantoidea</em> (Poaceae): filling the gaps for conservation in the earliest-diverging grass subfamily<em>. Botanical Journal of the Linnean Society</em> 192: 258–280. &nbsp;https://doi.org/10.1093/botlinnean/boz039</p>
<p>Wang, Y. (2009) <em>Genetic diversity and candidate gene selection for drought tolerance in perennial ryegrass.</em> MS Thesis. Purdue University.</p>
<p>Weising, K., Nybom, H., Wolff, K. &amp; Kahl, G. (2005) <em>DNA fingerprinting in plants. Principles, methods, and applications. </em>CRC Press, Boca Rayton, pp. 472.</p>
<p>Yang, J.B., Dong, Y.R., Wong, K.M., Gu, Z.J. &amp; Yang, H.Q. (2018) Genetic structure and differentiation in <em>Dendrocalamus sinicus</em> (Poaceae: Bambusoideae) populations provide insight into evolutionary history and speciation of woody bamboos. Scientific Reports 8: 1–13.&nbsp; https://doi.org/10.1038/s41598-018-35269-8</p>
<p>Yang, S., Xue, S., Kang, W., Qian, Z. &amp; Yi, Z. (2019) Genetic diversity and population structure of <em>Miscanthus lutarioriparius</em>, an endemic plant of China. <em>PloS one</em> 14: e0211471.&nbsp; https://doi.org/10.1371/journal.pone.0211471</p>
<p>Yeh, F.C., Yang, R.C. &amp; Boyle, T. (1999) <em>POPGENE. Microsoft windows-based freeware for population genetic analysis. </em>Release 1.31. Edmonton, University of Alberta.</p>
<p>Zhang, J., Xie, W., Wang, Y. &amp; Zhao, X. (2015) Potential of Start Codon Targeted (SCoT) Markers to Estimate Genetic Diversity and Relationships among Chinese <em>Elymus sibiricus </em>Accessions. <em>Molecules</em> 20: 5987. &nbsp;https://doi.org/10.3390/molecules20045987</p>
<p>Zhang, Y., Haidong, Y., Xiaomei, J., Xiaoli, W., Linkai, H., Bin, X., Xinquan, Z. &amp; Lexin, Z. (2016) Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers. <em>Hereditas</em> 153: 1–12.&nbsp; https://doi.org/10.1186/s41065-016-0007-z</p>

How to Cite

KESHAVARZI, MARYAM, RAHELEH TABARIPOUR, and FAZAL ULLAH. 2022. “Assessment of SCoT and ISSR Molecular Markers in Genetic Diversity of Rigid Ryegrass (<em>Lolium rigidum</Em> Gaud.) in Iran”. Phytotaxa 538 (3):182-96. https://doi.org/10.11646/phytotaxa.538.3.2.