Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-03-08
Page range: 175-181
Abstract views: 164
PDF downloaded: 254

A new species of Arthrographis (Eremomycetaceae, Dothideomycetes), from the soil in Guizhou, China

Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Department of Microbiology, Guiyang College of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
Department of Microbiology, Guiyang College of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350108, Fujian, China
Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
Institute of Fungus Resources, Department of Ecology, College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
taxonomy phylogeny saprophytic fungi Fungi

Abstract

During a survey of keratinolytic fungi in China, a new species, Arthrographis multiformispora was isolated from soil samples. Morphologically, A. multiformispora differs from other species in the genus by the presence of globose or subglobose chlamydospores and cylindrical arthroconidia. Phylogenetically, our four strains were clustered together with high support values and separated from other clades. We provided a description, illustrations, and phylogenetic tree for the new species.

References

Biser, S.A., Perry, H.D., Donnenfeld, E.D., Doshi, S.J. & Chaturvedi, V. (2004) Arthrographis kalrae mimicking acanthamoeba keratitis. Cornea 23: 314–317. https://doi.org/10.1097/00003226-200404000-00018

Boana, P., Arthur, I., Golledge, C. & Ellis, D. (2012) Refractory Arthrographis kalrae native knee joint infection. Medical Mycology Case Reports 1 (1): 112–114. https://doi.org/10.1016/j.mmcr.2012.10.005

Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. (2009) TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348

Chen, C.J., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y.H. & Xia, R. (2020) TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13 (8): 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

Chin-Hong, P.V., Sutton, D.A., Roemer, M., Jacobson, M.A. & Aberg, J.A. (2001) Invasive fungal sinusitis and meningitis due to Arthrographis kalrae in a patient with AIDS. Journal of Clinical Microbiology 39: 804–807. https://doi.org/10.1128/JCM.39.2.804-807.2001

Giraldo, A., Gené, J., Sutton, D.A., Madrid, H., Cano, J., Crous, P.W. & Guarro, J. (2014) Phylogenetic circumscription of Arthrographis (Eremomycetaceae, Dothideomycetes). Persoonia 32: 102–114. https://doi.org/10.3767/003158514x680207

Hernández-Restrepo, M., Giraldo, A., van Doorn, R., Wingfield, M.J., Groenewald, J.Z., Barreto, R.W., Colmán, A.A., Mansur, P.S.C. & Crous, P.W. (2020) The genera of Fungi – G6: Arthrographis, Kramasamuha, Melnikomyces, Thysanorea, and Verruconis. Fungal Systematics and Evolution 6 (1). https://doi.org/10.3114/fuse.2020.06.01

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14 (6): 587–589. https://doi.org/10.1038/nmeth.4285

Kang, H.J., Sigler, L., Lee, J., Gibas, C.F., Yun, S.H. & Lee, Y.W. (2010) Xylogone Ganodermophthora sp. nov., an ascomycetous pathogen causing yellow rot on cultivated mushroom Ganoderma lucidum in Korea. Mycologia 102 (5): 1167–1184. https://doi.org/10.3852/09-304

Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010

Minh, Q., Nguyen, M. & von Haeseler, A.A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188–1195. https://doi.org/10.1093/molbev/mst024

Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32, 268–274. https://doi.org/10.1093/molbev/msu300

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: e?cient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542. https://doi.org/10.1093/sysbio/sys029

Sigler, L. & Carmichael, J.W. (1976) Taxonomy of Malbranchea and some other Hyphomycetes with arthroconidia. Mycotaxon 4: 349–488.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197

Tewari, R.P. & Macpherson, C.R. (1971) A new dimorphic fungus, Oidiodendron kalrae: morphological and biochemical characteristics. Mycologia 63: 602–611. https://doi.org/10.2307/3757556

Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Voigt, K. & Wöstemeyer, J. (2000) Reliable amplification of actin genes facilitates deep-level phylogeny. Microbiological Research 155: 179–195. https://doi.org/10.1016/s0944-5013(00)80031-2

White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications, Academic Press, San Diego, California, pp 315–322.

Yoshitsugu, S. & Masaki, H. (2010) Arthrographis kalrae, a rare causal agent of onychomycosis, and its occurrence in natural and commercially available soils. Medical Mycology 48: 2, 384–389. https://doi.org/10.3109/13693780903219014

Zhang, D., Gao, F.L., Jakovli?, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20 (1): 348–355. https://doi.org/10.1111/1755-0998.13096

Zhang, Z.Y., Dong, C.B., Chen, W.H., Mou, Q.R., Lu, X.X., Han, Y.F., Huang, J.Z. & Liang, Z.Q. (2020a) The enigmatic Thelebolaceae (Thelebolales, Leotiomycetes): one new genus Solomyces and five new species. Frontiers in Microbiology 11: 572596. https://doi.org/10.3389/fmicb.2020.572596

Zhang, Z.Y., Shao, Q.Y., Li, X., Chen, W.H., Liang, J.D., Han, Y.F., Huang, J.Z. & Liang, Z.Q. (2021) Culturable fungi from Urban soils in China I: description of 10 new taxa. Microbiology Spectrum 9: e00867–21. https://doi.org/10.1128/Spectrum.00867-21

Zhang, Z.Y., Zhao, Y.X., Shen, X., Chen, W.H., Han, Y.F., Huang, J.Z., Liang, Z.Q.(2020b) Molecular phylogeny and morphology of Cunninghamella guizhouensis sp. nov. (Cunninghamellaceae, Mucorales), from soil in Guizhou, China. Phytotaxa 455 (1): 31–39. https://doi.org/10.11646/phytotaxa.455.1.4

How to Cite

Li, X., Zhang, Z.-Y., Chen, W.-H., Liang, J.-D., Huang, J.-Z., Han, Y.-F. & Liang, Z.-Q. (2022)

A new species of Arthrographis (Eremomycetaceae, Dothideomycetes), from the soil in Guizhou, China

. Phytotaxa 538 (3): 175–181. https://doi.org/10.11646/phytotaxa.538.3.1