Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-11-05
Page range: 178-190
Abstract views: 265
PDF downloaded: 1

A novel filamentous cyanobacterium Microseira minor sp. nov. (Oscillatoriaceae, Cyanobacteria) from the Ganfu Channel, Jiangxi, China

Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325039, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
Jiangxi Province Institute of Water Sciences, Nanchang 330029, China
Jiangxi Province Institute of Water Sciences, Nanchang 330029, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325039, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
Filamentous cyanobacteria Microseira minor polyphasic taxonomy Algae

Abstract

Two filamentous cyanobacterial strains were isolated from the mats attached to rock surfaces in the Ganfu Channel, Jiangxi Province, China. A polyphasic approach based on the combination of morphological and molecular features was used to characterize the two strains. Both strains showed the Lyngbya-like morphology under the light microscopy, and had the highest similarity range of 16S rRNA gene sequences as 95.00-96.01% to clones of Microseira wollei, exceeding the cutoff for species delimitation in cyanobacteria. Phylogenetic analyses based on both 16S rRNA and nifH genes and smaller sizes of trichomes in the two Lyngbya-like strains supported them to be proposed as a new species in the genus Microseira as Microseira minor, which is the second species of the genus Microseira. The difference of the 16S-23S ITS region between the two Microseira minor strains and its implication for the evaluation on cyanobacterial diversity and species differentiation were also discussed.

References

Al-Tebrineh, J., Pearson, L.A., Yasar, S.A., Neilan, B.A. (2012) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae 15 (3): 19–25. https://doi.org/10.1016/j.hal.2011.11.001

Anagnostidis, K. & Komárek, J. (1985) Modern approach to the classification system of cyanophytes. 1-Introduction. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes 38–39: 291–302.

Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E.C. (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research 17: 7843–7853. https://doi.org/10.1093/nar/17.19.7843

Engene, N., Coates, C.R. & Gerwick, W.H. (2010) 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. Journal of Phycology 46 (3): 591–601. https://doi.org/10.1111/j.1529-8817.2010.00840.x

Engene, N., Rottacker, E.C., Kaštovský, J., Byrum, T., Choi, H., Ellisman, M.H., Komárek, J. & Gerwick, W.H. (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. International Journal of Systematic Evolutionary Microbiology 62 (Pt 5): 1171–1178. https://doi.org/10.1099/ijs.0.033761-0

Engene, N., Paul, V.J., Byrum, T., Gerwick, W.H., Thor, A. & Ellisman, M.H. (2013) Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). Journal of Phycology 49 (6): 1095–1106. https://doi.org/10.1111/jpy.12115

Genuario, D.B., Vaz, M.G.M.V., Hentschke, G.S., Sant’Anna, C.L. & Fiore, M.F. (2015) Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. International Journal of Systematic and Evolutionary Microbiology 65 (2): 663–675. https://doi.org/10.1099/ijs.0.070078-0

Gkelis, S., Rajaniemi, P., Vardaka, E., Moustaka-Gouni, M., Lanaras, T. & Sivonen, K. (2005) Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. Microbial Ecology 49: 176–182. https://doi.org/10.1007/s00248-003-2030-7

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59 (3): 307–321. https://doi.org/10.1093/sysbio/syq010

Guiry, M.D. & Guiry, G.M. (2020) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway.

Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029

Ichimura, T. (1979) Isolation and culture methods of algae. Methods in phycological studies 1979: 294–305.

Iteman, I., Rippka, R., Marsac, N.T.D. & Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16s rrna–23s rrna spacer sequences of cyanobacteria. Microbiology 146 (Pt 6) (6): 1275–1286. https://doi.org/10.1099/00221287-146-6-1275

Jungblut, A.D. & Neilan, B.A. (2006) Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. Archives of Microbiology 185 (2): 107–114. https://doi.org/10.1007/s00203-005-0073-5

Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Kenins, A. (2017): Validation of the noxious cyanophyte Microseira wollei (Farlow ex Gomont) G.B.McGregor & Sendall (Oscillatoriaceae). Notulae Algarum 43: 1–3.

Komarek, J., Zapomelova, E., Smarda, J., Kopecky, J. & Komarkova, J. (2013) Polyphasic evaluation of Limnoraphis robusta, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of Limnoraphis gen. nov. Journal of the Czech Phycological Society 13 (1): 39–52. https://doi.org/10.5507/fot.2013.004

Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J.R. (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86 (4): 295–335.

Komárek, J. (2016) Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. Hydrobiologia 764 (1): 259–270. https://doi.org/10.1007/s10750-015-2242-0

Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054

Mcgregor, G.B. & Sendall, B.C. (2015) Phylogeny and toxicology of lyngbya wollei (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of microseira gen. nov. Journal of Phycology 51 (1): 109–119. https://doi.org/10.1111/jpy.12256

Mcgregor, G.B. & Sendall, B.C. (2019) Potamosiphon australiensis gen. nov. sp. nov. (Oscillatoriales), a new filamentous cyanobacterium from subtropical north-eastern Australia. Phytotaxa 387 (2): 77. https://doi.org/10.11646/phytotaxa.387.2.1

Neilan, B.A., Jacobs, D. & Goodman, A.E. (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and Environmental Microbiology 61 (11): 3875–3883. https://doi.org/10.1128/aem.61.11.3875-3883.1995

Page, R.D.M. (1996) TreeView: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358. https://doi.org/10.1093/bioinformatics/12.4.357

Pietrasiak, N., Osorio-Santos, K., Shalygin, S.Martin, M.P. & Johansen, J.R. (2019) When is a lineage a species? a case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. Journal of Phycology 55 (5): 976–996. https://doi.org/10.1111/jpy.12897

Rantala-Ylinen, A., Känä, S., Wang, H., Rouhiainen, L., Wahlsten, M., Rizzi, E., Berg, K., Gugger, M. & Sivonen, K. (2011) Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Applied Environmental Microbiology 77 (20): 7271–7278. https://doi.org/10.1128/AEM.06022-11

Seifert, M., McGregor, G., Eaglesham, G., Wickramasinghe, W. & Shaw, G. (2007) First evidence for the production of cylindrospermopsinand deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, Lyngbya wollei (Farlow ex Gomont) Speziale and Dyck. Harmful Algae 6: 73–80. https://doi.org/10.1016/j.hal.2006.07.001

Speziale, B.J. & Dyck, L.A. (1992) Lyngbya infestations: comparative taxonomy of Lyngbya wollei comb. nov. (cyanobacteria). Journal of Phycology 28 (5): 693–706. https://doi.org/10.1111/j.0022-3646.1992.00693.x

Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26: 31– 43. https://doi.org/10.1016/S0022-5320(69)90033-1

Srivastava, A.K. & Schlessinger, D. (1990) Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol 44: 105–129. https://doi.org/10.1146/annurev.mi.44.100190.000541

Stackebrandt, E. & Goebel, B.M. (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44: 846–849. https://doi.org/10.1099/00207713-44-4-846

Stackebrandt, E. & Ebers, J. (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 33: 152–155.

Swingley, W.D., Blankenship, R.E. & Raymond, J. (2008) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Molecular Biology and Evolution 25 (4): 643–654. https://doi.org/10.1093/molbev/msn034

Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I. & Starr, M.P. (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. International Journal of Systematic and Evolutionary Microbiology 37: 463–464. https://doi.org/10.1099/00207713-37-4-463

How to Cite

Geng, R., Wen, Q., Wang, Y., Yang, P., Dai, G., Li, R. & Yu, G. (2021)

A novel filamentous cyanobacterium Microseira minor sp. nov. (Oscillatoriaceae, Cyanobacteria) from the Ganfu Channel, Jiangxi, China

. Phytotaxa 524 (3): 178–190. https://doi.org/10.11646/phytotaxa.524.3.2