Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-11-05
Page range: 178-190
Abstract views: 51
PDF downloaded: 1

A novel filamentous cyanobacterium Microseira minor sp. nov. (Oscillatoriaceae, Cyanobacteria) from the Ganfu Channel, Jiangxi, China

Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325039, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
Jiangxi Province Institute of Water Sciences, Nanchang 330029, China
Jiangxi Province Institute of Water Sciences, Nanchang 330029, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325039, China
Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
Filamentous cyanobacteria Microseira minor polyphasic taxonomy Algae

Abstract

Two filamentous cyanobacterial strains were isolated from the mats attached to rock surfaces in the Ganfu Channel, Jiangxi Province, China. A polyphasic approach based on the combination of morphological and molecular features was used to characterize the two strains. Both strains showed the Lyngbya-like morphology under the light microscopy, and had the highest similarity range of 16S rRNA gene sequences as 95.00-96.01% to clones of Microseira wollei, exceeding the cutoff for species delimitation in cyanobacteria. Phylogenetic analyses based on both 16S rRNA and nifH genes and smaller sizes of trichomes in the two Lyngbya-like strains supported them to be proposed as a new species in the genus Microseira as Microseira minor, which is the second species of the genus Microseira. The difference of the 16S-23S ITS region between the two Microseira minor strains and its implication for the evaluation on cyanobacterial diversity and species differentiation were also discussed.

References

<p>Al-Tebrineh, J., Pearson, L.A., Yasar, S.A., Neilan, B.A. (2012) A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. <em>Harmful Algae</em> 15 (3): 19–25. https://doi.org/10.1016/j.hal.2011.11.001</p>
<p>Anagnostidis, K. &amp; Komárek, J. (1985) Modern approach to the classification system of cyanophytes. 1-Introduction. <em>Algological Studies/Archiv für Hydrobiologie, Supplement Volumes</em> 38–39: 291–302.</p>
<p>Edwards, U., Rogall, T., Blöcker, H., Emde, M. &amp; Böttger, E.C. (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. <em>Nucleic Acids Research</em> 17: 7843–7853. https://doi.org/10.1093/nar/17.19.7843</p>
<p>Engene, N., Coates, C.R. &amp; Gerwick, W.H. (2010) 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus <em>Lyngbya</em>. <em>Journal of Phycology</em> 46 (3): 591–601. https://doi.org/10.1111/j.1529-8817.2010.00840.x</p>
<p>Engene, N., Rottacker, E.C., Kaštovský, J., Byrum, T., Choi, H., Ellisman, M.H., Komárek, J. &amp; Gerwick, W.H. (2012) <em>Moorea</em> producens <em>gen. nov.</em>, <em>sp. nov.</em> and <em>Moorea bouillonii</em> <em>comb. nov.</em>, tropical marine cyanobacteria rich in bioactive secondary metabolites. <em>International Journal of Systematic Evolutionary Microbiology</em> 62 (Pt 5): 1171–1178. https://doi.org/10.1099/ijs.0.033761-0</p>
<p>Engene, N., Paul, V.J., Byrum, T., Gerwick, W.H., Thor, A. &amp; Ellisman, M.H. (2013) Five chemically rich species of tropical marine cyanobacteria of the genus <em>Okeania</em> <em>gen. nov.</em> (Oscillatoriales, Cyanoprokaryota). <em>Journal of Phycology</em> 49 (6): 1095–1106.&nbsp; https://doi.org/10.1111/jpy.12115</p>
<p>Genuario, D.B., Vaz, M.G.M.V., Hentschke, G.S., Sant’Anna, C.L. &amp; Fiore, M.F. (2015) <em>Halotia</em> <em>gen. nov.</em>, a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. <em>International Journal of Systematic and Evolutionary Microbiology</em> 65 (2): 663–675. https://doi.org/10.1099/ijs.0.070078-0</p>
<p>Gkelis, S., Rajaniemi, P., Vardaka, E., Moustaka-Gouni, M., Lanaras, T. &amp; Sivonen, K. (2005) <em>Limnothrix redekei</em> (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. <em>Microbial Ecology </em>49: 176–182.&nbsp; https://doi.org/10.1007/s00248-003-2030-7</p>
<p>Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. &amp; Gascuel, O. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. <em>Systematic Biology</em> 59 (3): 307–321. https://doi.org/10.1093/sysbio/syq010</p>
<p>Guiry, M.D. &amp; Guiry, G.M. (2020) <em>AlgaeBase. World-wide electronic publication</em>. National University of Ireland, Galway.</p>
<p>Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. <em>Systematic Biology</em> 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029</p>
<p>Ichimura, T. (1979) Isolation and culture methods of algae. <em>Methods in phycological studies </em>1979: 294–305.</p>
<p>Iteman, I., Rippka, R., Marsac, N.T.D. &amp; Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16s rrna–23s rrna spacer sequences of cyanobacteria.&nbsp; <em>Microbiology</em>&nbsp;146 (Pt 6) (6): 1275–1286. https://doi.org/10.1099/00221287-146-6-1275</p>
<p>Jungblut, A.D. &amp; Neilan, B.A. (2006) Molecular identification and evolution of the cyclic peptide hepatotoxins, microcystin and nodularin, synthetase genes in three orders of cyanobacteria. <em>Archives of Microbiology</em> 185 (2): 107–114. https://doi.org/10.1007/s00203-005-0073-5</p>
<p>Katoh, K. &amp; Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. <em>Molecular Biology and Evolution </em>30: 772–780. https://doi.org/10.1093/molbev/mst010</p>
<p>Kenins, A. (2017): Validation of the noxious cyanophyte&nbsp;<em>Microseira wollei</em>&nbsp;(Farlow ex Gomont) G.B.McGregor &amp; Sendall (Oscillatoriaceae).&nbsp;<em>Notulae Algarum</em>&nbsp;43: 1–3.</p>
<p>Komarek, J., Zapomelova, E., Smarda, J., Kopecky, J. &amp; Komarkova, J. (2013) Polyphasic evaluation of <em>Limnoraphis robusta</em>, a water-bloom forming cyanobacterium from Lake Atitlán, Guatemala, with a description of <em>Limnoraphis</em> <em>gen. nov.</em> <em>Journal of the Czech Phycological Society</em> 13 (1): 39–52. https://doi.org/10.5507/fot.2013.004</p>
<p>Komárek, J., Kaštovský, J., Mareš, J. &amp; Johansen, J.R. (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. <em>Preslia</em> 86 (4): 295–335.</p>
<p>Komárek, J. (2016) Review of the cyanobacterial genera implying planktic species after recent taxonomic revisions according to polyphasic methods: state as of 2014. <em>Hydrobiologia</em>&nbsp;764 (1): 259–270. https://doi.org/10.1007/s10750-015-2242-0</p>
<p>Kumar, S., Stecher, G. &amp; Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. <em>Molecular Biology and Evolution</em> 33: 1870–1874. https://doi.org/10.1093/molbev/msw054</p>
<p>Mcgregor, G.B. &amp; Sendall, B.C. (2015) Phylogeny and toxicology of <em>lyngbya wollei</em> (Cyanobacteria, Oscillatoriales) from north-eastern Australia, with a description of microseira <em>gen. nov. Journal of Phycology</em>&nbsp;51 (1): 109–119. https://doi.org/10.1111/jpy.12256</p>
<p>Mcgregor, G.B. &amp; Sendall, B.C. (2019) <em>Potamosiphon australiensis</em> <em>gen. nov.</em> <em>sp. nov.</em> (Oscillatoriales), a new filamentous cyanobacterium from subtropical north-eastern Australia. <em>Phytotaxa</em>&nbsp;387 (2): 77. https://doi.org/10.11646/phytotaxa.387.2.1</p>
<p>Neilan, B.A., Jacobs, D. &amp; Goodman, A.E. (1995) Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. <em>Applied and Environmental Microbiology</em> 61 (11): 3875–3883. https://doi.org/10.1128/aem.61.11.3875-3883.1995</p>
<p>Page, R.D.M. (1996) TreeView: An application to display phylogenetic trees on personal computers. <em>Computer Applications in the Biosciences</em> 12: 357–358. https://doi.org/10.1093/bioinformatics/12.4.357</p>
<p>Pietrasiak, N., Osorio-Santos, K., Shalygin, S.Martin, M.P. &amp; Johansen, J.R. (2019) When is a lineage a species? a case study in <em>Myxacorys gen. nov. </em>(Synechococcales: Cyanobacteria) with the description of two new species from the Americas.&nbsp;<em>Journal of Phycology </em>55 (5): 976–996. https://doi.org/10.1111/jpy.12897</p>
<p>Rantala-Ylinen, A., Känä, S., Wang, H., Rouhiainen, L., Wahlsten, M., Rizzi, E., Berg, K., Gugger, M. &amp; Sivonen, K. (2011) Anatoxin-a synthetase gene cluster of the cyanobacterium <em>Anabaena </em>sp. strain 37 and molecular methods to detect potential producers.<em> Applied Environmental Microbiology</em> 77 (20): 7271–7278. https://doi.org/10.1128/AEM.06022-11</p>
<p>Seifert, M., McGregor, G., Eaglesham, G., Wickramasinghe, W. &amp; Shaw, G. (2007) First evidence for the production of cylindrospermopsinand deoxy-cylindrospermopsin by the freshwater benthic cyanobacterium, <em>Lyngbya wollei</em> (Farlow ex Gomont) Speziale and Dyck. <em>Harmful Algae</em> 6: 73–80. https://doi.org/10.1016/j.hal.2006.07.001</p>
<p>Speziale, B.J.&nbsp;&amp;&nbsp;Dyck, L.A.&nbsp;(1992)&nbsp;<em>Lyngbya&nbsp;</em>infestations: comparative taxonomy of&nbsp;<em>Lyngbya wollei&nbsp;comb. nov. </em>(cyanobacteria). <em>Journal of Phycology</em>&nbsp;28 (5):&nbsp;693–706. https://doi.org/10.1111/j.0022-3646.1992.00693.x</p>
<p>Spurr, A.R. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. <em>Journal of Ultrastructure Research</em> 26: 31– 43.&nbsp; https://doi.org/10.1016/S0022-5320(69)90033-1</p>
<p>Srivastava,&nbsp;A.K.&nbsp;&amp;&nbsp;Schlessinger,&nbsp;D.&nbsp;(1990)&nbsp;Mechanism and regulation of bacterial ribosomal RNA processing. <em>Annu Rev Microbiol </em>44: 105–129. https://doi.org/10.1146/annurev.mi.44.100190.000541</p>
<p>Stackebrandt, E. &amp; Goebel, B.M. (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. <em>International Journal of Systematic Bacteriology</em> 44: 846–849.&nbsp; https://doi.org/10.1099/00207713-44-4-846</p>
<p>Stackebrandt, E. &amp; Ebers, J. (2006) Taxonomic parameters revisited: tarnished gold standards. <em>Microbiology</em> <em>Today</em> 33: 152–155.</p>
<p>Swingley, W.D., Blankenship, R.E. &amp; Raymond, J. (2008) Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. <em>Molecular Biology and Evolution</em> 25 (4): 643–654.&nbsp; https://doi.org/10.1093/molbev/msn034</p>
<p>Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I. &amp; Starr, M.P. (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. <em>International Journal of Systematic and Evolutionary Microbiology </em>37: 463–464. https://doi.org/10.1099/00207713-37-4-463</p>