Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-10-15
Page range: 89-98
Abstract views: 44
PDF downloaded: 1

A New Species of Kumanoa (Batrachospermales, Rhodophyta) from Baiyun Mountain, Guangdong, China

School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan 030006, China
China COI-5P Kumanoa New species rbcL UPA Algae

Abstract

Kumanoa belonging to the order Batrachospermales is the most species-rich and widely distributed genus of freshwater red algae in China. In this study, a new Kumanoa species is described and illustrated from Baiyun Mountain, Guangdong, China, based on morphological observations and phylogenetic analysis. Kumanoa baiyunensis sp. nov is morphologically distinguished from other species by presenting a small habit (0.5–1 cm tall) with abundant branching in upper part of the thallus; carposporophytes spherical and one per whorl; club-shaped trichogynes with distinct stalk; spermatangia sparse and single-grown, terminal on primary fascicles. Phylogenetic analysis based on the concatenated rbcL+COI-5P+UPA alignment places Kumanoa baiyunensis in a well-supported clade (98/0.96, bootstrap proportion/posterior probability) sister to K. faroensis (from USA) and K. spermatiophora (from Hawaii) with high divergence (rbcL: 4.9%–5.0%, COI-5P: 10.1%–10.5%, UPA: 2.3%). In addition, K. baiyunensis can be easily distinguished from ten Kumanoa species reported in China through morphological features such as small thallus size, abundant branching in upper parts of the thallus, and spermatangia sparse, single-grown, and terminal on primary fascicles. The description of this new species expands the diversity of genus Kumanoa in the world.

References

<p>Entwisle, T.J., Vis, M.L., Chiasson, W.B., Necchi, O.Jr. &amp; Sherwood, A.R. (2009) Systematics of the Batrachospermales (Rhodophyta)–a synthesis. <em>Journal of</em> <em>Phycology</em> 45 (3): 704–715.&nbsp; https://doi.org/10.1111/j.1529-8817.2009.00686.x</p>
<p>Fang, K.-P., Nan, F.-R., Feng, J., Lv, J.-P., Liu, Q. &amp; Xie, S.-L. (2019) Morphology and molecular phylogeny of a freshwater red algae. <em>Journal of Lake Sciences </em>31 (1): 220–235.&nbsp; https://doi.org/10.18307/2019.0121</p>
<p>Fischer, E., Gerlach, J., Killmann, D. &amp; Quandt, D. (2020) The freshwater red algae (Batrachospermales, Rhodophyta) of Africa and Madagascar I. New species of <em>Kumanoa</em>, <em>Sirodotia</em> and the new genus <em>Ahidranoa </em>(Batrachospermaceae). <em>Plant and Fungal Systematics</em> 65 (1): 147–166.&nbsp; https://doi.org/10.35535/pfsyst-2020-0010</p>
<p>Freshwater, D.W. &amp; Rueness, J. (1994) Phylogenetic relationships of some European <em>Gelidium</em> (Gelidiales, Rhodophyta) species, based on <em>rbc</em>L nucleotide sequence analysis. <em>Phycologia</em> 33 (3): 187–194.&nbsp; https://doi.org/10.2216/i0031-8884-33-3-187.1</p>
<p>Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. &amp; Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. <em>Systematic Biology</em> 59 (3): 307–321.&nbsp; https://doi.org/10.1093/sysbio/syq010</p>
<p>Guiry, M.D. &amp; Guiry, G.M. (2021) <em>AlgaeBase</em>. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org (accessed 30 April 2021)</p>
<p>Hall, T.A. (1999) Bioedit: a user-friendly biological sequence alignment program for windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41 (41): 95–98.&nbsp; https://doi.org/10.1021/bk-1999-0734.ch008</p>
<p>Jao, C.-C. (1941) Studies on the freshwater algae of China. VIII. A preliminary account of the Chinese freshwater Rhodophyceae. <em>Sinesia</em>, 12: 245–289.</p>
<p>Ji, L., Xie, S.-L., Feng, J., Chen, L. &amp; Wang, J. (2014) Molecular systematics of the four endemic Batrachospermaceae (Rhodophyta) species in China with multilocus data. <em>Journal of Sytematics Evolution</em> 52 (1): 92–100.&nbsp; https://doi.org/10.1111/jse.12058</p>
<p>Johnston, E.T., Lim, P.E., Buhari, N., Keil, E.J., Djawad, M.I. &amp; Vis, M.L. (2014) Diversity of freshwater red algae (Rhodophyta) in Malaysia and Indonesia from morphological and molecular data. <em>Phycologia</em> 53 (4): 329–341. &nbsp;https://doi.org/10.2216/13-223.1</p>
<p>Kumano, S. (2002) <em>Freshwater Red Algae of the World.</em> Biopress Ltd, Bristol, UK, pp. 1–375.</p>
<p>Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. &amp; Calcott, B. (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution formolecular and morphological phylogenetic analyses. <em>Molecular biology and evolution</em> 34 (3): 772–773.&nbsp; https://doi.org/dx.doi.org/10.1093/molbev/msw260</p>
<p>Li, Q., Ji, L. &amp; Xie, S.L. (2010) Phylogenetic analysis of Batrachospemales (Florideophyceae, Rhodophyta) based on chloroplast <em>rbc</em>L sequences. <em>Acta Hydrobiologica Sinica </em>34 (1): 20–28.&nbsp; https://doi.org/10.3724/sp.j.1035.2010.00020</p>
<p>Minh, B.Q., Nguyen, M. &amp; Haeseler, A.V. (2013) Ultrafast approximation for phylogenetic bootstrap. <em>Molecular Biology and Evolution</em> 30 (5): 1188–1195.&nbsp; https://doi.org/10.1093/molbev/mst024</p>
<p>Nan, F.-R., Feng, J. &amp; Xie, S.-L. (2014) Phylogenetic relationship of genus <em>Kumanoa</em> (Batrachospermales, Rhodophyta) based on UPA genes. <em>Bulletin of Botanical Research </em>34 (5): 584–591.&nbsp; https://doi.org/CNKI:SUN:MBZW.0.2014-05-002</p>
<p>Nan, F.-R., Feng, J. &amp; Xie, S.-L. (2015) Phylogenetic relationship of genus <em>Kumanoa</em> based on chloroplast <em>psa</em>A and <em>psb</em>A genes. <em>Acta Phytotaxonomica Sinica</em> 39 (1): 155–163.&nbsp; https://doi.org/10.7541/2015.20</p>
<p>Necchi, O.Jr. &amp; Vis, M.L. (2012) Monograph of the genus<em> Kumanoa </em>(Rhodophyta, Batrachospermales). <em>Bibliothece Phycologica</em> 116: 1–79.</p>
<p>Necchi, O.Jr., Vis, M.L. &amp; Oliveira, M.C. (2010) Phylogenetic relationships in <em>Kumanoa </em>(Batrachospermales, Rhodophyta) species in Brazil with the proposal of <em>Kumanoa amazonensis</em> sp nov. <em>Phycologia</em> 49 (1): 97–103.&nbsp; https://doi.org/10.2216/09-24.1</p>
<p>Necchi, O.Jr., Agostinho, D.C. &amp; Vis, M.L. (2018) Revision of <em>Batrachospermum </em>section <em>Virescentia </em>(Batrachospermales, Rhodophyta) with the establishment of the new genus, <em>Virescentia </em>stat. nov.. <em>Cryptogamie Algologie </em>39 (3): 313–338.&nbsp; https://doi.org/10.7872/crya/v39.iss3.2018.313</p>
<p>Necchi, O.Jr., Garcia, Fo.A.S. &amp; Paiano, M.O. (2019a) Revision of <em>Batrachospermum</em> sections <em>Acarposporophytum</em> and <em>Aristata </em>(Batrachospermales, Rhodophyta) with the establishment of the new genera <em>Acarposporophycos</em> and <em>Visia</em>. <em>Phytotaxa </em>395 (2): 51–65.&nbsp; https://doi.org/10.11646/phytotaxa.395.2.1</p>
<p>Necchi, O.Jr., Garcia, Fo.A.S., Paiano, M.O. &amp; Vis, M.L. (2019b) Revision of <em>Batrachospermum</em> section <em>Macrospora</em> (Batrachospermales, Rhodophyta) with the establishment of the new genus <em>Montagnia</em>. <em>Phycologia</em> 58 (6): 582–591.&nbsp; https://doi.org/10.1080/00318884.2019.1624143</p>
<p>Nguyen, L.T., Schmidt, H.A., Haeseler, A.V. &amp; Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. <em>Molecular Biology</em> &amp; <em>Evolution</em> 32 (1): 268–274.&nbsp; https://doi.org/10.1093/molbev/msu300</p>
<p>Ronquist, F., Teslenko, M., Van, Der. Mark, P., Ayres, D.L., Dar, L.A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. &amp; Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. <em>Systematic Biology</em> 61 (3): 539–542.&nbsp; https://doi.org/10.1093/sysbio/sys029</p>
<p>Salomaki, E.D., Kwandrans, J., Eloranta, P. &amp; Vis, M.L. (2014) Molecular and morphological evidence for <em>Sheathia</em> gen. nov. (Batrachospermales, Rhodophyta) and three new species. <em>Journal of Phycology</em> 50 (3): 526–542.&nbsp; https://doi.org/10.1111/jpy.12179</p>
<p>Saunders, G.W. (1993) Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction-friendly DNA. <em>Journal of Phycology</em> 29 (2): 251–254.&nbsp; https://doi.org/10.1111/j.0022-3646.1993.00251.x</p>
<p>Saunders, G.W. (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical transactions of the Royal Society B. <em>Biological sciences</em> 360 (1462): 1879–1888.&nbsp; http://dx.doi.org/10.1098/rstb.2005.1719</p>
<p>Saunders, G.W. &amp; Moore, T.E. (2013) Refinements for the amplification and sequencing of red algal DNA barcode and RedTol phylogenetic markers: a summary of current primers, profiles and strategies. <em>Algae</em> 28 (1): 31–43.&nbsp; https://doi.org/10.4490/algae.2013.28.1.031</p>
<p>Sherwood, A.R., Jones, C.A. &amp; Conklin, K.Y. (2014) A New Species of <em>Kumanoa</em> (Batrachospermales, Rhodophyta) from Kôke‘e State Park, Kaua‘i, Hawai‘i,” <em>Pacific Science</em> 68 (4): 577–585.&nbsp; https://doi.org/10.2984/68.4.11</p>
<p>Shi, Z.-X. (1994) Two New Species of the Genus <em>Batrachospermum</em> (Rhodophyta) in China. <em>Acta Phytotaxonomica Sinica</em> 32 (3): 275–280. http://dx.doi.org/10.1080/09397140.2002.10637945</p>
<p>Szinte, A.L., Taylor, J.C., Abosede, A.T. &amp; Vis, M.L. (2020) Current status of freshwater red algal diversity (Rhodophyta) of the African continent including description of new taxa (Batrachospermales). <em>Phycologia</em> 59 (3): 187–199.&nbsp; https://doi.org/10.1080/00318884.2020.1732149</p>
<p>Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. &amp; Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. <em>Molecular Biology and Evolution</em> 28 (10): 2731–2739.&nbsp; http://doi.org/10.1093/molbev/msr121</p>
<p>Thiers, B. (2021) [continuously updated] <em>Index Herbariorum</em>: <em>A Global Directory of Public Herbaria and Associated Staff</em>. New York Botanical Garden’s Virtual Herbarium, New York. Available from: http://sweetgum.nybg.org/ih/ (accessed 24 March 2021)</p>
<p>Vis, M.L. &amp; Sheath, R.G. (1997) Biogeography of <em>Batrachospermum</em> <em>gelatinosum</em> (Batrachospermales, Rhodophyta) in North America based on molecular and morphological data. <em>Journal of Phycology</em> 33 (3): 520–526.&nbsp; https://doi.org/10.1111/j.0022-3646.1997.00520.x</p>
<p>Vis, M.L., Necchi, O.Jr., Chiasson, W.B. &amp; Entwisle, T.J. (2012) Molecular phylogeny of the genus <em>Kumanoa</em> (Batrachospermales, Rhodophyta). <em>Journal of Phycology</em> 48 (3): 750–758.&nbsp; https://doi.org/10.1111/j.1529-8817.2012.01141.x</p>
<p>Vis, M.L., Lee, J., Eloranta, P., Chapuis, I.S., Lam, D.W. &amp; Necchi, O.Jr. (2020) <em>Paludicola</em> gen. nov. and revision of the species formerly in <em>Batrachospermum</em> Section <em>Turfosa</em> (Batrachospermales, Rhodophyta). <em>Journal of Phycology </em>56 (4): 844–861.&nbsp; http://dx.doi.org/10.1111/jpy.13001</p>
<p>Xie, S.-L. &amp; Shi, Z.-X. (2003) New reports of <em>Batrachospermum</em> Roth (Batrachospermales, Rhodophyta) from China. <em>Bulletin of Botanical Research</em> 23 (3): 269–275.</p>
<p>Xie, S.-L. &amp; Shi, Z.-X. (2005) Three new species of <em>Batrachospermum</em> Roth (Batrachospermaceae, Rhodophyta) in China. <em>Chinese</em> <em>Journal of Oceanology</em> &amp; <em>Limnology</em> 23 (2): 204–209.&nbsp; https://doi.org/10.1007/BF02894240</p>
<p>Xie, S.-L., Shi, Z.-X., Lu, H.-S. &amp; Liang, L.-B. (2003) Four new reports of <em>Batrachospermum</em> (Batrachospermales, Rhodophyta) from china. <em>Journal of Wuhan Botanical Research</em> 21 (2): 148–152.&nbsp; https://doi.org/10.1023/A:1022289509702</p>
<p>Xie, S.-L., Qiu, M.-Y., Nan, F.-R., Fang, K.-P. &amp; Han, J.-F. (2020) Batrachospermales (Rhodophyta) of China: a catalogue and bibliography. <em>Nova Hedwigia </em>110 (1–2): 37–77.&nbsp; https://doi.org/10.1127/nova_hedwigia/2020/0565</p>
<p>Zhang, D., Gao. F, Jakovlić, I., Zou, H., Zhang, J., Li, W.X. &amp; Wang, G.T. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. <em>Molecular Ecology Resources</em> 20 (1): 348–355.&nbsp; https://doi.org/10.1111/1755-0998.13096</p>