Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-10-11
Page range: 211-220
Abstract views: 140
PDF downloaded: 1

A novel Mariannaea species isolated from decayed pine needles in Japan

School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274-8555, Japan
Nectriaceae morphology phylogeny saprophytic fungi plant litter Fungi

Abstract

A strain of the fungal genus Mariannaea, isolated from decayed leaves of Japanese red pine (Pinus densiflora), was identified to be a new species based on its molecular phylogeny and morphology. Molecular phylogenetic analysis revealed that the fungus belongs to a clade containing M. punicea and related species (M. punicea-related species) and that it forms a lineage independent of these species. Microscopic morphological comparisons with M. punicea-related species indicated that the new isolate differs with respect to the width of the phialides and length of the conidiophores. Comparison of macroscopic morphological characteristics revealed that M. punicea-related species are characterized by reddish-purple colonies, whereas the new isolate lacks this distinctive pigmentation. Moreover, the surface structure of the colonies of this fungus has a distinct irregular undulate pattern toward the margins. Given that this isolate can be clearly distinguished from the known M. punicea-related species, we consider the fungus to be a newly identified species, for which we propose the name Mariannaea imbricata sp. nov.

References

<p>Cai, L., Kurniawati, E. &amp; Hyde, K.D. (2010) Morphological and molecular characterization of <em>Mariannaea aquaticola</em> <em>sp. nov.</em> collected from freshwater habitats. <em>Mycological Progress</em> 9: 337–343. https://doi.org/10.1007/s11557-009-0641-1</p>
<p>Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P., Carnegie, A.J., Moreno, G., Luangsa-Ard, J., Thangavel, R., Alexandrova, A.V., Baseia, I.G., Bellanger, J.M., Bessette, A.E., Bessette, A.R., Delapeña-Lastra, S., García, D., Gené, J., Pham, T.H.G., Heykoop, M., Malysheva, E., Malysheva, V., Martín, M.P., Morozova, O.V., Noisripoom, W., Overton, B.E., Rea, A.E., Sewall, B.J., Smith, M.E., Smyth, C.W., Tasanathai, K., Visagie, C.M., Adamčík, S., Alves, A., Andrade, J.P., Aninat, M.J., Araújo, R.V.B., Bordallo, J.J., Boufleur, T., Baroncelli, R., Barreto, R.W., Bolin, J., Cabero, J., Caboň, M., Cafà, G., Caffot, M.L.H., Cai, L., Carlavilla, J.R., Chávez, R., Decastro, R.R.L., Delgat, L., Deschuyteneer, D., Dios, M.M., Domínguez, L.S., Evans, H.C., Eyssartier, G., Ferreira, B.W., Figueiredo, C.N., Liu, F., Fournier, J., Galli-Terasawa, L.V., Gil-Durán, C., Glienke, C., Gonçalves, M.F.M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-González, I., Ivanushkina, N.E., Jargeat, P., Khalid, A.N., Khan, J., Kiran, M., Kiss, L., Kochkina, G.A., Kolařík, M., Kubátová, A., Lodge, D.J., Loizides, M., Luque, D., Manjón, J.L., Marbach, P.A.S., Massolajr, N.S., Mata, M., Miller, A.N., Mongkolsamrit, S., Moreau, P.A., Morte, A., Mujic, A., Navarro-Ródenas, A., Németh, M.Z., Nóbrega, T.F., Nováková, A., Olariaga, I., Ozerskaya, S.M., Palma, M.A., Petters-Vandresen, D.A.L., Piontelli, E., Popov, E.S., Rodríguez, A., Requejo, Ó., Rodrigues, A.C.M., Rong, I.H., Roux, J., Seifert, K.A., Silva, B.D.B., Sklenář, F., Smith, J.A., Sousa, J.O., Souza, H.G., Desouza, J.T., Švec, K., Tanchaud, P., Tanney, J.B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., Vaniperen, A.L., Vasilenko, O.V., Verbeken, A., Yilmaz, N., Zamora, J.C., Zapata, M., Jurjevi, Ž. &amp; Groenewald, J.Z. (2019) Fungal Planet description sheets: 868–950. <em>Persoonia</em> 42: 291–473.&nbsp; https://doi.org/10.3767/persoonia</p>
<p>Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. &amp; Flouri, T. (2020) ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. <em>Molecular Biology and Evolution</em> 37: 291–294. &nbsp;https://doi.org/10.1093/molbev/msz189</p>
<p>Domsch, K.H., Grams, W. &amp; Anderson, T.H. (2007) <em>Compendium of soil fungi second edition.</em> pp. 256–266.</p>
<p>Edler, D., Klein, J., Antonelli, A. &amp; Silvestro, D. (2021) raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. <em>Methods in Ecology</em> <em>and Evolution</em> 12: 373–377. https://doi.org/10.1111/2041-210X.13512</p>
<p>Fukuda, T., Sudoh, Y., Tsuchiya, Y., Okuda, T., Fujimori, F. &amp; Igarashi, Y. (2011) Marianins A and B, prenylated phenylpropanoids from <em>Mariannaea camptospora</em>. <em>Journal of Natural Products</em> 74: 1327–1330. https://doi.org/10.1021/np200035m</p>
<p>Glass, N.L. &amp; Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. <em>Applied and Environmental Microbiology</em> 61: 1323–1330. &nbsp;https://doi.org/10.1128/aem.61.4.1323-1330.1995</p>
<p>Gräfenhan, T., Schroers, H.J., Nirenberg, H.I. &amp; Seifert, K.A. (2011) An overview of the taxonomy, phylogeny and typification of some nectriaceous fungi classified in <em>Cosmospora</em>, <em>Acremonium</em>, <em>Fusarium</em>, <em>Stilbella </em>and <em>Volutella</em>. <em>Studies in Mycology</em> 68: 79–113. &nbsp;https://doi.org/10.3114/sim.2011.68.04</p>
<p>Hu, D.H., Wang, M. &amp; Cai, L. (2017) Phylogenetic assessment and taxonomic revision of <em>Mariannaea</em>. <em>Mycological Progress</em> 16: 271–283. https://doi.org/10.1007/s11557-016-1252-2</p>
<p>Hyde, K.D., Dong, Y., Phookamsak, R., Jeewon, R., Bhat, D.J., Jones, E.B.G., Liu, N.G., Abeywickrama, P.D., Mapook, A., Wei, D., Perera, R.H., Manawasinghe, I.S., Pem, D., Bundhun, D., Karunarathna, A., Ekanayaka, A.H., Bao, D.F., Li, J., Samarakoon, M.C., Chaiwan, N., Lin, C.G., Phutthacharoen, K., Zhang, S.N., Senanayake, I.C., Goonasekara, I.D., Thambugala, K.M., Phukhamsakda, C., Tennakoon, D.S., Jiang, H.B., Yang, J., Zeng, M., Huanraluek, N., Liu, J.K., Wijesinghe, S.N., Tian, Q., Tibpromma, S., Brahmanage, R.S., Boonmee, S., Huang, S.K., Thiyagaraja, V., Lu, Y.Z., Jayawardena, R.S., Dong, W., Yang, E.F., Singh, S.K., Singh, S.M., Rana, S., Lad, S.S., Anand, G., Devadatha, B., Niranjan, M., Sarma, V.V., Liimatainen, K., Aguirre-Hudson, B., Niskanen, T., Overall, A., Alvarenga, R.L.M., Gibertoni, T.B., Pfliegler, W.P., Horváth, E., Imre, A., Alves, A.L., da Silva Santos, A.C., Tiago, P.V., Bulgakov, T.S., Wanasinghe, D.N., Bahkali, A.H., Doilom, M., Elgorban, A.M., Maharachchikumbura, S.S.N., Rajeshkumar, K.C., Haelewaters, D., Mortimer, P.E., Zhao, Q., Lumyong, S., Xu, J. &amp; Sheng, J. (2020) Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. <em>Fungal Diversity </em>100: 5–277.&nbsp; https://doi.org/10.1007/s13225-020-00439-5</p>
<p>Ishiuchi, K., Hirose, D., Kondo., Watanabe, K., Terasaka, K. &amp; Makino, T. (2020) Mariannamides A and B, new cyclic octapeptides isolated from <em>Mariannaea elegans</em> NBRC102301.<em> Bioorganic &amp; Medicinal Chemistry Letters</em> 30: 126946.&nbsp; https://doi.org/10.1016/j.bmcl.2019.126946</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20: 1160–1166. https://doi.org/10.1093/bib/bbx108</p>
<p>Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. &amp; Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. <em>Bioinformatics</em> 35: 4453–4455. https://doi.org/10.1093/bioinformatics/btz305</p>
<p>Lemoine, F., Domelevo Entfellner, J.B., Wilkinson, E., Correia, D., Dávila Felipe, M., De Oliveira, T. &amp; Gascuel, O. (2018) Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. <em>Nature</em> 556: 452–456.&nbsp; https://doi.org/10.1038/s41586-018-0043-0</p>
<p>Lombard, L., Van der Merwe, N.A., Groenewald, J.Z. &amp; Crous, P.W. (2015) Generic concepts in <em>Nectriaceae</em>. <em>Studies in Mycology</em> 80: 189–245. http://dx.doi.org/10.1016/j.simyco.2014.12.002</p>
<p>Luangsa-ard, J.J., Hywel-Jones, N.L., Manoch, L. &amp; Samson, R.A. (2005) On the relationships of <em>Paecilomyces</em> sect. <em>Isarioidea</em> species. <em>Mycological Research</em> 109 (05): 581–589. https://doi.org/10.1017/S0953756205002741</p>
<p>Matsushima, T. (1995) Matsushima Mycological Memoirs No. 8. Matsushima Fungus Collect, Kobe, Japan Murray, M.G. &amp; Thompson, W.F. (1980) Rapid isolation of high molecular weight plant DNA. <em>Nucleic Acids Research</em> 8: 4321–4326.&nbsp; https://doi.org/10.1093/nar/8.19.4321</p>
<p>Nonaka, K., Kaneta, T., Omura, S. &amp; Masuma, R. (2015) <em>Mariannaea macrochlamydospora</em>, a new hyphomycete (<em>Nectriaceae</em>) from soil in the Bonin Islands, Japan. <em>Mycoscience</em> 56: 29–33. http://dx.doi.org/10.1016/j.myc.2014.02.001</p>
<p>O’Donnell, K. &amp; Cigelink, E. (1997) Two divergent intragenomic rRNA ITS2 types within a monophyletic lineage of the fungus <em>Fusarium</em> are nonorthologous. <em>Molecular Phylogenetics and Evolution</em> 7: 103–116.&nbsp; https://doi.org/10.1006/mpev.1996.0376</p>
<p>Ogawa, Y., Suda, A., Kusama-Eguchi, K., Watanabe, K. &amp; Tokumasu, S. (2005) Intraspecific groups of <em>Umbelopsis ramanniana </em>inferred from nucleotide sequences of nuclear rDNA internal transcribed spacer regions and sporangiospore morphology. <em>Mycoscience</em> 46: 343–351.&nbsp; http://dx.doi.org/10.1007/s10267-005-0257-5</p>
<p>Okuda, T. &amp; Yamamoto, K. (2000) Materials for the fungus flora of Japan (56) <em>Mariannaea camptospora</em> and <em>M. elegans</em> var. <em>punicea</em> from Japan. <em>Mycoscience</em> 41: 411–414.&nbsp; https://doi.org/10.1007/BF02463957</p>
<p>Samson, R.A. (1974) <em>Paecilomyces</em> and some allied hyphomycetes. <em>Studies in Mycology</em> 6: 1–117.</p>
<p>Samson, R.A. &amp; Bigg, W.L. (1988) A new species of <em>Mariannaea</em> from California. <em>Mycologia</em> 80 (1): 131–134.&nbsp; https://doi.org/10.1080/00275514.1988.12025512</p>
<p>Samuels, G.J. (1989) Nectria and Penicillifer. <em>Mycologia</em> 81 (3): 347–355.&nbsp; https://doi.org/10.1080/00275514.1989.12025758</p>
<p>Shimazu, M. &amp; Sato, H. (1996) Media for selective isolation of an entomogenous fungus, <em>Beauveria bassiana</em> (Deuteromycotina: Hyphomycetes). <em>Applied Entomology and Zoology</em> 31 (2): 291–298.&nbsp; https://doi.org/10.1303/aez.31.291</p>
<p>Tokumasu, S. (1996) Mycofloral succession on <em>Pinus densiflora </em>needles on a modern site. <em>Mycoscience</em> 37: 313–321.&nbsp; https://doi.org/10.1007/BF02461303</p>
<p>Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J.Z., Cardinali, G., Houbraken, J., Boekhout, T., Crous, P.W., Robert, V. &amp; Verkley, G.J.M. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. <em>Studies in Mycology</em> 92: 135–154. https://doi.org/10.1016/j.simyco.2018.05.001</p>
<p>White, T.J., Bruns, T., Lee, S. &amp; Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. <em>In:</em> Innis, M.A., Gelfand, D.H., Sninsky, J.J. &amp; White, Y.J. (eds.) <em>PCR Protocols: A Guide to Methods and Application.</em> Academic Press, San Diego, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1</p>
<p>Zeng, Z.Q. &amp; Zhuang, W.Z. (2014) A new holomorphic species of <em>Mariannaea</em> and epitypification of <em>M. samuelsii</em>. <em>Mycological Progress</em> 13: 967–973.&nbsp; https://doi.org/10.1007/s11557-014-0980-4</p>