Abstract
Ditiola haasii, a largely unknown member of the Dacrymycetes described from Germany, is documented in detail based on two specimens collected on Picea abies wood in the Boubínský prales virgin forest, Czech Republic. The work represents the first complete taxonomic/ecological investigation of the species since its original description. The morphology of the newly studied samples is evaluated to gain a better knowledge of intraspecific variation, and a phylogenetic analysis based on nrLSU data is provided to further confirm our identification and show the phylogenetic position of D. haasii within the Dacrymycetes. A comparison with similar species and those with which it has been confused is made and ecological details are provided based on our collections. Colour photographs of basidiomata and micromorphological characters are published. Ditiola haasii is currently documented by just six records worldwide, all of them from Central Europe.
References
Gardes, M. & Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes. Application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Heilmann-Clausen, J. (2001) A gradient analysis of communities of macrofungi and slime moulds on decaying beech logs. Mycological Research 105: 575–596. https://doi.org/10.1017/S0953756201003665
Heilmann-Clausen, J., Adam?ík, S., Bässler, C., Halme, P., Krisai-Greilhuber, I. & Holec, J. (2017) State of the art and future directions for mycological research in old-growth forests. Fungal Ecology 27: 141–144. https://doi.org/10.1016/j.funeco.2016.12.005
Holec, J., K?íž, M., Pouzar, Z. & Šandová, M. (2015) Boubínský prales virgin forest, a Central European refugium of boreal-montane and old-growth forest fungi. Czech Mycology 67 (2) 157–226. https://doi.org/10.33585/cmy.67204
Holec, J., Ku?era, T., B??ák, J. & Hort, L. (2020) Macrofungi on large decaying spruce trunks in a Central European old-growth forest: what factors affect their species richness and composition? Mycological Progress 19: 53–66. https://doi.org/10.1007/s11557-019-01541-y
Holec, J. & Ku?era, T. (2020) Richness and composition of macrofungi on large decaying trees in a Central European old-growth forest: a case study on silver fir (Abies alba). Mycological Progress 19 (12): 1429–1443. https://doi.org/10.1007/s11557-020-01637-w
Huelsenbeck, J.P., Larget, B. & Alfaro, M.A. (2004) Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Molecular Biology and Evolution 21: 1123–1133. https://doi.org/10.1093/molbev/msh123
Jülich, W. (1984) Die Nichtblätterpilze, Gallertpilze und Bauchpilze, Kleine Kryptogamentflora, Vol. IIb/1. Gustav Fischer Verlag, Jena, 626 pp.
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
Krieger, W. (1906) Einige neue Pilze aus Sachsen. Annales Mycologici 4: 39–40.
McNabb, R.F.R. (1965) Taxonomic studies in the Dacrymycetaceae V. Heterotextus Lloyd. New Zealand Journal of Botany 3: 215–222. https://doi.org/10.1080/0028825X.1965.10428722
McNabb, R.F.R. (1973) Taxonomic studies in the Dacrymycetaceae VIII. Dacrymyces Nees ex Fries. New Zealand Journal of Botany 11: 461–524. https://doi.org/10.1080/0028825X.1973.10430296
Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300
Oberwinkler, F. (1989) Ditiola haasii sp. nov., eine neue Art der Dacrymycetales. Zeitschrift für Mykologie 55: 197–206.
Oberwinkler, F. (2014) Dacrymycetes. In: McLaughlin, D.J. & Spatafora, J.W. (eds.) The Mycota VII. Systematics and Evolution, part A. Springer, Berlin, pp. 357–372. https://doi.org/10.1007/978-3-642-55318-9_13
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
Shirouzu, T., Matsuoka, S., Doi, H., Nagata, N., Ushio, M. & Hosaka, K. (2020) Complementary molecular methods reveal comprehensive phylogenetic diversity integrating inconspicuous lineages of early-diverged wood-decaying mushrooms. Scientific Reports 10: 3057. https://doi.org/10.1038/s41598-020-59620-0
Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
Wei?, M. & Oberwinkler, F. (2001) Phylogenetic relationships in Auriculariales and related groups – hypotheses derived from nuclear ribosomal DNA sequences. Mycological Research 105: 403–415. https://doi.org/10.1017/S095375620100363X
Zamora, J.C. & Ekman, S. (2020) Phylogeny and character evolution in the Dacrymycetes, and systematics of Unilacrymaceae and Dacryonaemataceae fam. nov. Persoonia 44: 161–205. https://doi.org/10.3767/persoonia.2020.44.07
