Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-09-28
Page range: 80-94
Abstract views: 50
PDF downloaded: 1

Simplicillium pech-merlensis, a new fungal species isolated from the air of the Pech-Merle show cave

Laboratoire de Recherche des Monuments Historiques (LRMH), Ministère de la Culture, 29 rue de Paris, 77420 Champs-sur-Marne, France; Sorbonne Universités, Centre de Recherche sur la Conservation (CRC, USR 3224), Museum national d’Histoire naturelle, Ministère de la Culture, CNRS; CP21, 36 rue Geoffroy-Saint-Hilaire, 75005 Paris, France
Laboratoire de Recherche des Monuments Historiques (LRMH), Ministère de la Culture, 29 rue de Paris, 77420 Champs-sur-Marne, France; Sorbonne Universités, Centre de Recherche sur la Conservation (CRC, USR 3224), Museum national d’Histoire naturelle, Ministère de la Culture, CNRS; CP21, 36 rue Geoffroy-Saint-Hilaire, 75005 Paris, France
Laboratoire de Recherche des Monuments Historiques (LRMH), Ministère de la Culture, 29 rue de Paris, 77420 Champs-sur-Marne, France; Sorbonne Universités, Centre de Recherche sur la Conservation (CRC, USR 3224), Museum national d’Histoire naturelle, Ministère de la Culture, CNRS; CP21, 36 rue Geoffroy-Saint-Hilaire, 75005 Paris, France
Cave Cordycipitaceae new species Simplicillium pech-merlensis Fungi

Abstract

An original fungal strain has been recovered during an aerobiological survey in the Pech-Merle show cave (France). The use of multi-locus (ITS, LSU, SSU RPB1, RPB2 and TEF-1α) phylogenetic analysis of the strain by maximum likelihood and by Bayesian inference coupled with a morphological characterization allowed us to place it in the Simplicillium genus as Simplicillium pech-merlensis sp. nov. This new species seems morphologically close to S. calcicola and S. album, which were also first isolated from a cave habitat. This paper discusses the phylogenetic place of S. pech-merlensis and some other species in the genus Simplicillium.

References

<p>Barton, H.A. &amp; Jurado, V. (2007) What’s up down there? Microbial diversity in caves. <em>Microbe-American Society for Microbiology</em> 2: 132–138.</p>
<p>Barton, H.A. &amp; Northup, D.E. (2007) Geomicrobiology in cave environments: past, current and future perspectives. <em>Journal of Cave and Karst Studies</em> 69 (1): 163–178.</p>
<p>Bastian, F. &amp; Alabouvette, C. (2009) Lights and shadows on the conservation of a rock art cave: the case of Lascaux Cave. <em>International Journal of Speleology</em> 38 (1): 55–60. https://doi.org/10.5038/1827-806X.38.1.6</p>
<p>Brooks, D.R., Bilewitch, J., Condy, C., Evans, D.C., Folinsbee, K.E., Fröbisch, J., Halas, D., Hill, S., McLennan, D.A. &amp; Mattern, M. (2007) Quantitative phylogenetic analysis in the 21<sup>st</sup> century. <em>Revista Mexicana de Biodiversidad</em> 78 (2): 225–252.</p>
<p>Castlebury, L.A., Rossman, A.Y., Gi-Ho, S., Hyten, A.S. &amp; Spatafora, J.W. (2004) Multigene phylogeny reveals new lineage for <em>Stachybotrys chartarum</em>, the indoor air fungus. <em>Mycological Research</em> 108 (8): 864–872.&nbsp; https://doi.org/10.1017/S0953756204000607</p>
<p>Chen, W.-H., Liu, C., Han, Y.-F., Liang, J.-D., Tian, W.-Y. &amp; Liang, Z.-Q. (2019) Three novel insect-associated species of <em>Simplicillium</em> (Cordycipitaceae, Hypocreales) from Southwest China. <em>MycoKeys</em> 58: 83–102.&nbsp; https://doi.org/10.3897/mycokeys.58.37176</p>
<p>Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. &amp; Sayers, E.W. (2016) GenBank. <em>Nucleic Acids Research</em> 44 (D1): D67–D72.&nbsp; https://doi.org/10.1093/nar/gkv1276</p>
<p>Crous, P., Luangsa-Ard, J., Wingfield, M., Carnegie, A., Hernández-Restrepo, M., Lombard, L., Roux, J., Barreto, R., Baseia, I. &amp; Cano-Lira, J. (2018) Fungal Planet description sheets: 785–867. <em>Persoonia: Molecular Phylogeny and Evolution of Fungi</em> 41: 238–417.&nbsp; https://doi.org/10.3767/persoonia.2018.41.12</p>
<p>Crous, P.W., Gams, W., Stalpers, J.A., Robert, V. &amp; Stegehuis, G. (2004) MycoBank: an online initiative to launch mycology into the 21st century. <em>Studies in Mycology</em> 50 (1): 19–22.</p>
<p>Dai, Y., Lin, Y., Pang, X., Luo, X., salendra, L., Wang, J., Zhou, X., Lu, Y., Yang, B. &amp; Liu, Y. (2018) Peptides from the soft coral-associated fungus <em>Simplicillium sp.</em> SCSIO41209. <em>Phytochemistry</em> 154: 56–62.&nbsp; https://doi.org/10.1016/j.phytochem.2018.06.014</p>
<p>Dong, Q., Dong, R., Xing, X. &amp; Li, Y. (2018) A new antibiotic produced by the cyanobacterium-symbiotic fungus <em>Simplicillium lanosoniveum</em>. <em>Natural Product Research</em> 32 (11): 1348–1352.&nbsp; https://doi.org/10.1080/14786419.2017.1343320</p>
<p>Edel, V., Steinberg, C., Gautheron, N., Recorbet, G. &amp; Alabouvette, C. (2001) Genetic diversity of <em>Fusarium oxysporum</em> populations isolated from different soils in France. <em>FEMS Microbiology Ecology</em> 36: 61–71.&nbsp; https://doi.org/10.1016/S0168-6496(01)00119-2</p>
<p>Edler, D., Klein, J., Antonelli, A. &amp; Silvestro, D. (2019) raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. <em>BioRxiv</em>: 800912.&nbsp; https://doi.org/10.1101/800912</p>
<p>Fukuda, T., Sudoh, Y., Tsuchiya, Y., Okuda, T. &amp; Igarashi, Y. (2014) Isolation and biosynthesis of preussin B, a pyrrolidine alkaloid from <em>Simplicillium lanosoniveum</em>. <em>Journal of Natural Products</em> 77 (4): 813–817.&nbsp; https://doi.org/10.1021/np400910r</p>
<p>Gams, W. (1971) <em>Cephalosporium-artige schimmelpilze (Hyphomycetes)</em>. Gustav Fischer Verlag, Stuttgart, 262 pp.</p>
<p>Gardes, M. &amp; Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. <em>Molecular Ecology</em> 2 (2): 113–118.&nbsp; https://doi.org/10.1111/j.1365-294X.1993.tb00005.x</p>
<p>Gomes, A.A., Pinho, D.B., Cardeal, Z., Menezes, H.C., De Queiroz, M.V. &amp; Pereira, O.L. (2018) <em>Simplicillium coffeanum</em>, a new endophytic species from Brazilian coffee plants, emitting antimicrobial volatiles. <em>Phytotaxa</em> 333 (2): 188–198.&nbsp; https://doi.org/10.11646/phytotaxa.333.2.2</p>
<p>Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41 (41): 95–98.</p>
<p>Jiang, J.-R., Cai, L. &amp; Liu, F. (2017) Oligotrophic fungi from a carbonate cave, with three new species of <em>Cephalotrichum</em>. <em>Mycology</em> 8 (3): 164–177.&nbsp; https://doi.org/10.1080/21501203.2017</p>
<p>Jurado, V., Sanchez-Moral, S. &amp; Saiz-Jimenez, C. (2008) Entomogenous fungi and the conservation of the cultural heritage: A review. <em>International Biodeterioration &amp; Biodegradation</em> 62 (4): 325–330.&nbsp; https://doi.org/10.1016/j.ibiod.2008.05.002</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20 (4): 1160–1166.&nbsp; https://doi.org/10.1093/bib/bbx108</p>
<p>Kepler, R.M., Luangsa-Ard, J.J., Hywel-Jones, N.L., Quandt, C.A., Sung, G.-H., Rehner, S.A., Aime, M.C., Henkel, T.W., Sanjuan, T. &amp; Zare, R. (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). <em>IMA fungus</em> 8 (2): 335–353.&nbsp; https://doi.org/10.5598/imafungus.2017.08.02.08</p>
<p>Kondo, N., Iwasaki, H., Tokiwa, T., Ômura, S. &amp; Nonaka, K. (2020) <em>Simplicillium spumae</em> (Cordycipitaceae, Hypocreales), a new hyphomycetes from aquarium foam in Japan. <em>Mycoscience</em> 61 (3): 116–121.&nbsp; https://doi.org/10.3897/mycokeys.72.55088</p>
<p>Kubátová, A. &amp; Dvorák, L. (2005) Entomopathogenic fungi associated with insect hibernating in underground shelters. <em>Czech Mycology</em> 57 (3/4): 221–237.&nbsp; https://doi.org/10.33585/cmy.57303</p>
<p>Kumar, S., Stecher, G., Li, M., Knyaz, C. &amp; Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. <em>Molecular Biology and Evolution</em> 35 (6): 1547–1549.&nbsp; https://doi.org/10.1093/molbev/msy096</p>
<p>Kuzmina, L., Galimzianova, N., Abdullin, S. &amp; Ryabova, A. (2012) Microbiota of the Kinderlinskaya cave (South Urals, Russia). <em>Microbiology</em> 81 (2): 251–258.&nbsp; https://doi.org/10.1134/S0026261712010109</p>
<p>Lemoine, F., Correia, D., Lefort, V., Doppelt-Azeroual, O., Mareuil, F., Cohen-Boulakia, S. &amp; Gascuel, O. (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. <em>Nucleic Acids Research</em> 47 (W1): W260–W265.&nbsp; https://doi.org/10.1093/nar/gkz303</p>
<p>Liang, X., Nong, X.-H., Huang, Z.-H. &amp; Qi, S.-H. (2017) Antifungal and antiviral cyclic peptides from the deep-sea-derived fungus <em>Simplicillium obclavatum</em> EIODSF 020. <em>Journal of Agricultural and Food Chemistry</em> 65 (25): 5114–5121.&nbsp; https://doi.org/10.1021/acs.jafc.7b01238</p>
<p>Lim, S.Y., Lee, S., Kong, H.G. &amp; Lee, J. (2014) Entomopathogenicity of <em>Simplicillium lanosoniveum</em> isolated in Korea. <em>Mycobiology</em> 42 (4): 317–321.&nbsp; https://doi.org/10.5941/MYCO.2014.42.4.317</p>
<p>Liu, F. &amp; Cai, L. (2012) Morphological and molecular characterization of a novel species of <em>Simplicillium</em> from China. <em>Cryptogamie, Mycologie</em> 33 (2): 137–144.&nbsp; https://doi.org/10.7872/crym.v33.iss2.2012.137</p>
<p>Liu, Y.J., Whelen, S. &amp; Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. <em>Molecular Biology and Evolution</em> 16 (12): 1799–1808.&nbsp; https://doi.org/10.1093/oxfordjournals.molbev.a026092</p>
<p>Lorblanchet, M. (2018) <em>Art pariétal : grottes ornées du Quercy</em>. Ed. du Rouergue, Rodez, 480 pp.</p>
<p>Matheny, P.B., Liu, Y.J., Ammirati, J.F. &amp; Hall, B.D. (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). <em>American Journal of Botany</em> 89 (4): 688–698. https://doi.org/10.3732/ajb.89.4.688</p>
<p>Mitova, M.M., Iliev, M., Nováková, A., Gorbushina, A.A., Groudeva, V.I. &amp; Martin-Sanchez, P.M. (2017) Diversity and biocide susceptibility of fungal assemblages dwelling in the Art Gallery of Magura Cave, Bulgaria. <em>International Journal of Speleology</em> 46 (1): 67–80.&nbsp; https://doi.org/10.5038/1827-806X</p>
<p>Nonaka, K., Kaifuchi, S., Ômura, S. &amp; Masuma, R. (2013) Five new <em>Simplicillium</em> species (Cordycipitaceae) from soils in Tokyo, Japan. <em>Mycoscience</em> 54 (1): 42–53.&nbsp; https://doi.org/10.1016/j.myc.2012.07.002</p>
<p>Northup, D.E. &amp; Lavoie, K.H. (2001) Geomicrobiology of caves: a review. <em>Geomicrobiology journal</em> 18 (3): 199–222.&nbsp; https://doi.org/10.1080/01490450152467741</p>
<p>Nováková, A. (2009) Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. <em>International Journal of Speleology</em> 38 (1): 71–82.&nbsp; https://doi.org/10.5038/1827-806X.38.1.8</p>
<p>Ogórek, R., Lejman, A. &amp; Matkowski, K. (2013) Fungi isolated from Niedźwiedzia Cave in Kletno (Lower Silesia, Poland). <em>International Journal of Speleology</em> 42 (2): 161–166.&nbsp; http://dx.doi.org/10.5038/1827-806X.42.2.9</p>
<p>Okane, I., Nonaka, K., Kurihara, Y., Abe, J.P. &amp; Yamaoka, Y. (2020) A new species of <em>Leptobacillim</em>, <em>L. symbioticum</em>, isolated from mites and sori of soybean rust. <em>Mycoscience</em> 61 (4): 165–171.&nbsp; https://doi.org/10.1016/j.myc.2020.04.006</p>
<p>Ortiz, M., Legatzki, A., Neilson, J.W., Fryslie, B., Nelson, W.M., Wing, R.A., Soderlund, C.A., Pryor, B.M. &amp; Maier, R.M. (2014) Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. <em>The ISME Journal</em> 8 (2): 478–491.&nbsp; https://doi.org/10.1038/ismej.2013.159</p>
<p>Pastoors, A., Lenssen-Erz, T., Breuckmann, B., Ciqae, T., Kxunta, U., Rieke-Zapp, D. &amp; Thao, T. (2017) Experience based reading of Pleistocene human footprints in Pech-Merle. <em>Quaternary International</em> 430: 155–162.&nbsp; http://dx.doi.org/10.1016/j.quaint.2016.02.056</p>
<p>Rehner, S. &amp; Buckley, E. (2005) A <em>Beauveria</em> phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to <em>Cordyceps</em> teleomorphs. <em>Mycologia</em> 97 (1): 84–98.&nbsp; https://doi.org/10.1080/15572536.2006.11832842</p>
<p>Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. &amp; Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. <em>Systematic Biology</em> 61 (3): 539–542.&nbsp; https://doi.org/10.1093/sysbio/sys029</p>
<p>Rukachaisirikul, V., Chinpha, S., Saetang, P., Phongpaichit, S., Jungsuttiwong, S., Hadsadee, S., Sakayaroj, J., Preedanon, S., Temkitthawon, P. &amp; Ingkaninan, K. (2019) Depsidones and a dihydroxanthenone from the endophytic fungi <em>Simplicillium lanosoniveum</em> (J.F.H. Beyma) Zare &amp; W. Gams PSU-H168 and PSU-H261. <em>Fitoterapia</em> 138: 104286.&nbsp; https://doi.org/10.1016/j.fitote.2019.104286</p>
<p>Skaptsov, M., Smirnov, S., Kutsev, M., Uvarova, O., Sinitsyna, T., Shmakov, A. &amp; Matsyura, A. (2017) Pathogenicity of <em>Simplicillium lanosoniveum</em> to <em>Coccus hesperidum</em>. <em>Ukrainian Journal of Ecology</em> 7 (4): 689–691.&nbsp; https://doi.org/10.15421/2017_1801</p>
<p>Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30 (9): 1312–1313.&nbsp; https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Sun, J.-Z., Ge, Q.-Y., Zhu, Z.-B., Zhang, X.-L. &amp; Liu, X.-Z. (2019) Three dominating hypocrealean fungi of the ‘white mold spots’ on acrylic varnish coatings of the murals in a Koguryo tomb in China. <em>Phytotaxa</em> 397 (3): 225–236.&nbsp; https://doi.org/10.11646/phytotaxa.397.3</p>
<p>Sung, G.-H., Hywel-Jones, N.L., Sung, J.-M., Luangsa-ard, J.J., Shrestha, B. &amp; Spatafora, J.W. (2007) Phylogenetic classification of <em>Cordyceps</em> and the clavicipitaceous fungi. <em>Studies in Mycology</em> 57: 5–59.&nbsp; https://doi.org/10.3114/sim.2007.57.01</p>
<p>Talavera, G. &amp; Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. <em>Systematic Biology</em> 56 (4): 564–577.&nbsp; https://doi.org/10.1080/10635150701472164</p>
<p>Uchida, R., Kondo, A., Yagi, A., Nonaka, K., Masuma, R., Kobayashi, K. &amp; Tomoda, H. (2019) Simpotentin, a new potentiator of amphotericin B activity against <em>Candida albicans</em>, produced by <em>Simplicillium minatense</em> FKI-4981. <em>The Journal of Antibiotics</em> 72 (3): 134–140.&nbsp; https://doi.org/10.1038/s41429-018-0128-x</p>
<p>Vanderwolf, K.J., Malloch, D. &amp; McAlpine, D.F. (2016) Fungi on white-nose infected bats (<em>Myotis spp.</em>) in Eastern Canada show no decline in diversity associated with <em>Pseudogymnoascus destructans</em> (Ascomycota: Pseudeurotiaceae). <em>International Journal of Speleology</em> 45 (1): 43–50.&nbsp; http://dx.doi.org/10.5038/1827-806X.45.1.1946</p>
<p>Vanderwolf, K.J., Malloch, D., McAlpine, D.F. &amp; Forbes, G.J. (2013) A world review of fungi, yeasts, and slime molds in caves. <em>International Journal of Speleology</em> 42 (1): 77–96.&nbsp; https://doi.org/10.5038/1827-806X.42.1.9</p>
<p>Vilgalys, R. &amp; Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several <em>Cryptococcus</em> species. <em>Journal of Bacteriology</em> 172 (8): 4238–4246.&nbsp; https://doi.org/10.1128/jb.172.8.4238-4246</p>
<p>Wang, Y.-B., Wang, Y., Fan, Q., Duan, D.-E., Zhang, G.-D., Dai, R.-Q., Dai, Y.-D., Zeng, W.-B., Chen, Z.-H. &amp; Li, D.-D. (2020) Multigene phylogeny of the family Cordycipitaceae (Hypocreales): new taxa and the new systematic position of the Chinese cordycipitoid fungus <em>Paecilomyces hepiali</em>. <em>Fungal Diversity</em>: 1–46.&nbsp; https://doi.org/10.1007/s13225-020-00457-3</p>
<p>Ward, N., Robertson, C., Chanda, A.K. &amp; Schneider, R. (2012) Effects of <em>Simplicillium lanosoniveum</em> on <em>Phakopsora pachyrhizi</em>, the soybean rust pathogen, and its use as a biological control agent. <em>Phytopathology</em> 102 (8): 749–760.&nbsp; https://doi.org/10.1094/PHYTO-01-11-0031</p>
<p>Wei, D.-P., Wanasinghe, D.N., Hyde, K.D., Mortimer, P.E., Xu, J., Xiao, Y.-P., Bhunjun, C.S. &amp; To-anun, C. (2019) The genus <em>Simplicillium</em>. <em>MycoKeys</em> 60: 69–92.&nbsp; https://doi.org/10.1016/j.simyco.2017.12.002</p>
<p>White, T.J., Bruns, T., Lee, S.J.W.T. &amp; Taylor, J.W. (1990) <em>Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics</em>.<em> In: </em>Innis, M.A., Gelfand, D.H., Sninsky, J.J. &amp; White, T.J. (eds.) <em>PCR protocols: a guide to methods and applications</em>. vol 1. Academic Press, Inc, San Diego, pp. 315–322</p>
<p>Zare, R. &amp; Gams, W. (2001) A revision of <em>Verticillium</em> section Prostrata. IV. The genera <em>Lecanicillium</em> and <em>Simplicillium gen. nov</em>. <em>Nova Hedwigia</em> 73 (1): 1–50. https://doi.org/10.1127/nova.hedwigia/71/2001/1</p>
<p>Zare, R. &amp; Gams, W. (2008) A revision of the <em>Verticillium fungicola</em> species complex and its affinity with the genus <em>Lecanicillium</em>. <em>Mycological Research</em> 112 (7): 811–824.&nbsp; http://dx.doi.org/10.1016/j.mycres.2008.01.019</p>
<p>Zare, R. &amp; Gams, W. (2016) More white verticillium-like anamorphs with erect conidiophores. <em>Mycological Progress</em> 15 (10–11): 993–1030.&nbsp; https://doi.org/10.1007/s11557-016-1214-8</p>
<p>Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. &amp; Wang, G.T. (2020a) PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. <em>Molecular Ecology Resources</em> 20 (1): 348–355.&nbsp; https://doi.org/10.1111/1755-0998.13096</p>
<p>Zhang, Z.-F., Zhao, P. &amp; Cai, L. (2018) Origin of cave fungi. <em>Frontiers in Microbiology</em> 9: 1407.&nbsp; https://doi.org/10.3389/fmicb.2018.01407</p>
<p>Zhang, Z.-F., Zhou, S.-Y., Eurwilaichitr, L., Ingsriswang, S., Raza, M., Chen, Q., Zhao, P., Liu, F. &amp; Cai, L. (2020b) Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species. <em>Fungal Diversity</em>.&nbsp; https://doi.org/10.1007/s13225-020-00453-7</p>
<p>Zhang, Z., Liu, F., Zhou, X., Liu, X., Liu, S. &amp; Cai, L. (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. <em>Persoonia: Molecular Phylogeny and Evolution of Fungi</em> 39: 1–31.&nbsp; https://doi.org/10.3767/persoonia.2017.39.01</p>
<p>Zhao, D., Zhu, X., Chen, L., Liu, W., Chen, J., Wang, S., Zang, J., Duan, Y. &amp; Liu, X. (2020) Toxicity of a secondary metabolite produced by <em>Simplicillium chinense</em> Snef5 against the root-knot nematode <em>Meloidogyne incognita</em>. <em>Acta Agriculturae Scandinavica, Section B—Soil &amp; Plant Science</em>: 1–6.&nbsp; https://doi.org/10.1080/09064710.2020.1791242</p>