Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-09-13
Page range: 21-39
Abstract views: 166
PDF downloaded: 1

Threat patterns and conservation status of endemic vascular flora in Argentina: a quantitative perspective

Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina.
Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina.
Instituto de Botánica Darwinion (CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina.
Andes Argentina conservation endemics IUCN macroecological modeling richness vascular plants General

Abstract

Global warming, coupled with habitat destruction and human activity, are accelerating the rates of species extinction worldwide. Species-extinction risk assessment, using the IUCN Red List categories, together with the study of the spatial patterns of biodiversity, are fundamental approaches to identify conservation priorities and targeting government decisions to mitigate impacts on biodiversity. Here, we analyzed threat levels of endemic species for the entire Argentinean vascular flora. Accordingly, we classified species following the IUCN threat categories and analyzed threat levels within different families, plant life-forms, and biogeographic regions of the country. We also analyzed spatial patterns of threat by means of macroecological modeling techniques and explored the effectiveness of current protected areas in relation to the threatened endemics they actually included. The results showed that of the 1683 Argentinean endemic vascular plant taxa, 800 species were categorized under threat (VU, EN, or CR) (~47%). Families with the highest number of threatened species were also those with the highest number of endemics; herbs and climbing plants presented significantly higher threat levels, and among biogeographic provinces, the most affected in terms of threat proportion were the Altoandina, Yungas, and Paranaense. In addition, different hotspots of threatened endemism were detected, mainly associated with mountainous areas with high altitudinal heterogeneity; of these, only nearly half of the hotspots are included, at least partially, within a protected area. An up-to-date species list of Argentinean endemic plants, including their proposed conservation status, is also provided. This work seeks to contribute to the knowledge on geographical patterns of the Argentinean flora and its conservation, complementing the information published in the Flora of Argentina.

References

<p>Aagesen, L., Szumik, C.A., Zuloaga, F.O. &amp; Morrone, O. (2009) Quantitative biogeography in the South America highlands-recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. <em>Cladistics</em> 25: 295–310. https://doi.org/10.1111/j.1096-0031.2009.00248.x</p>
<p>Aagesen, L., Bena, M.J., Nomdedeu, S., Panizza, A., López, R.P. &amp; Zuloaga, F.O. (2012) Areas of endemism in the southern central Andes. <em>Darwiniana</em> 50 (2): 218–251.</p>
<p>Addo-Fordjour, P., Rahmad, Z.B. &amp; Shahrul, A.M.S. (2012) Effects of human disturbance on liana community diversity and structure in a tropical rainforest, Malaysia: implication for conservation. <em>Journal of Plant Ecology</em> 5 (4): 391–399. https://doi.org/10.1093/jpe/rts012</p>
<p>Alfonzetti, M., Rivers, M.C., Auld, T.D., Le Breton, T., Cooney, T., Stuart, S., Zimmer, H.C., Makinson, R.G., Wilkins, K.C.E., Delgado, E.C., Dimitrova, N.A. &amp; Gallagher, R.V. (2021) Shortfalls in extinction risk assessments for plants. <em>Australian Journal of Botany</em> 68 (6): 466–471. https://doi.org/10.1071/BT20106</p>
<p>Algar, A.C., Kharouba, H.M., Young, E.R. &amp; Kerr, J.T. (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. <em>Ecography</em> 32 (1): 22–33. &nbsp;https://doi.org/10.1111/j.1600-0587.2009.05832.x</p>
<p>Anton, A.M. &amp; Zuloaga, F.O. (2012a) Flora Argentina online. Available from: http://www.floraargentina.edu.ar (Accessed April 2021).</p>
<p>Anton, A.M. &amp; Zuloaga, F.O. (eds.) (2012b) Brassicaceae<em>. In: Flora Argentina.</em> vol. 8. Estudio Sigma, Buenos Aires, 270 pp.</p>
<p>Anton, A.M., Belgrano, M.J. &amp; Zuloaga, F.O. (eds.) (2012) Verbenaceae<em>. In: Flora Argentina</em>, vol. 14. Estudio Sigma, Buenos Aires, 230 pp.</p>
<p>Arana, M.D., Natale, E., Ferretti, N., Romano, G., Oggero, A., Martínez, G., Posadas, P. &amp; Morrone, J.J. (2021) Esquema biogeográfico de la república Argentina. <em>Opera Lilloana</em> 56: 1–238.</p>
<p>Bachman, S., Moat, J., Hill, A.W., De La Torre, J. &amp; Scott, B. (2011) Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. <em>ZooKeys</em> (150): 117–126. https://doi.org/10.3897/zookeys.150.2109</p>
<p>Bachman, S.P., Nic Lughadha, E.M. &amp; Rivers, M.C. (2018) Quantifying progress toward a conservation assessment for all plants. <em>Conservation Biology</em> 32 (3): 516–524. https://doi.org/10.1111/cobi.13071</p>
<p>Bachman, S.P., Field, R., Reader, T., Raimondo, D., Donaldson, J., Schatz, G.E. &amp; Lughadha, E.N. (2019) Progress, challenges and opportunities for Red Listing. <em>Biological Conservation</em> 234: 45–55. https://doi.org/10.1016/j.biocon.2019.03.002</p>
<p>Barboza, G.E., Cantero, J.J., Chiarini, F.E., Chiapella, J., Freire, S., Nuñez, C.O., Palchetti, V. &amp; Espinar, A.L. (2016) Vascular plants of Sierra de Famatina (La Rioja, Argentina): an analysis of its biodiversity. <em>Phytotaxa</em> 248 (1): 1–123. https://doi.org/10.11646/phytotaxa.248.1.1</p>
<p>Bennun, L., Regan, E.C., Bird, J., van Bochove, J.W., Katariya, V., Livingstone, S., Mitchell, R., Savy, C., Starkey, M., Temple, H. &amp; Pilgrim, J.D. (2018) The value of the IUCN Red List for business decision making. <em>Conservation Letters</em> 11 (1): e12353. &nbsp;https://doi.org/10.1111/conl.12353</p>
<p>Bini, L.M., Diniz-Filho, J.A.F., Rangel, T.F., Bastos, R.P. &amp; Pinto, M.P. (2006) Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. <em>Diversity and Distributions</em> 12 (5): 475–482. &nbsp;https://doi.org/10.1111/j.1366-9516.2006.00286.x</p>
<p>Bivand, R. &amp; Lewin-Koh, N. (2020) maptools: Tools for Handling Spatial Objects. R package version 1.0-2. Available from: https://CRAN.R-project.org/package=maptools (Accessed December 2020)</p>
<p>Bivand, R., Pebesma, E. &amp; Gomez-Rubio, V. (2013) <em>Applied spatial data analysis with R, Second edition.</em> Springer, New York, 405 pp.&nbsp; https://doi.org/10.1007/978-1-4614-7618-4</p>
<p>Brook, B.W., Sodhi, N.S. &amp; Bradshaw, C.J.A. (2008) Synergies among extinction drivers under global change. <em>Trends in Ecology and Evolution</em> 23: 453–460.&nbsp; https://doi.org/10.1016/j.tree.2008.03.011</p>
<p>Brooks, T.M., Mittermeier, R.A., da Fonseca, G.A.B., Gerlach, J., Hoffmann, M., Lamoreux, J.F., Mittermeier, C.G., Pilgrim, J.D. &amp; Rodrigues, A.S.L. (2006) Global biodiversity conservation priorities. <em>Science</em> 313: 58–61.&nbsp; https://doi.org/10.1126/science.1127609</p>
<p>Brooks, T.M., Butchart, S.H., Cox, N.A., Heath, M., Hilton-Taylor, C., Hoffmann, M., Kingston, N., Rodríguez, J.P., Stuart, S.N. &amp; Smart, J. (2015) Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals. <em>Biodiversity</em> 16 (2–3): 157–174.&nbsp; https://doi.org/10.1080/14888386.2015.1075903</p>
<p>Brown, A., Martínez Ortiz, U., Acerbi, M. &amp; Corcuera, J.F. (2006) <em>La situación ambiental Argentina 2005. </em>Fundación Vida Silvestre Argentina, Buenos Aires, 586 pp.</p>
<p>Cabrera, A.L. &amp; Willink, A. (1980) <em>Biogeografía de América latina. </em>Programa Regional de Desarrollo Científico y Tecnológico, Washington DC., 122 pp.</p>
<p>Cantú-Salazar, L. &amp; Gaston, K.J. (2010) Very large PAs and their contribution to terrestrial biological conservation. <em>Bioscience</em> 60 (10): 808–818.&nbsp; https://doi.org/10.1525/bio.2010.60.10.7</p>
<p>Ceballos, G., Ehrlich, P.R., Barnosky, A.D., García, A., Pringle, R.M. &amp; Palmer, T.M. (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. <em>Science Advances</em> 1 (5): e1400253. &nbsp;https://doi.org/10.1126/sciadv.1400253</p>
<p>Chamberlain, S. (2020) rredlist: ‘IUCN’ Red List Client. R package version 0.7.0. Available from: https://CRAN.R-project.org/package=rredlist (Accessed December 2020)</p>
<p>Chehébar, C., Novaro, A., Iglesias, G., Walker, S., Funes, M., Tammone, M. &amp; Didier, K. (2013) <em>Identificación de áreas de importancia para la biodiversidad en la estepa y el monte de Patagonia. </em>ErreGé y Asociados imprenta, Buenos Aires, 112 pp.</p>
<p>Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. &amp; Thomas, C.D. (2011) Rapid range shifts of species associated with high levels of climate warming. <em>Science</em> 333: 1024–1026. https://doi.org/10.1126/science.1206432</p>
<p>Collen, B., Dulvy, N.K., Gaston, K.J., Gärdenfors, U., Keith, D.A., Punt, A.E., Regan, H.M., Böhm, M., Hedges, S., Seddon, M., Butchart, S.H.M., Hilton-Taylor, C., Hoffmann, M., Bachman, S.P. &amp; Akçakaya, H.R. (2016) Clarifying misconceptions of extinction risk assessment with the IUCN Red List. <em>Biology Letters</em> 12: 20150843. &nbsp;https://doi.org/10.1098/rsbl.2015.0843</p>
<p>Corlett, R.T. (2016) Plant diversity in a changing world: status, trends, and conservation needs. <em>Plant Diversity</em> 38: 10–16. &nbsp;https://doi.org/10.1016/j.pld.2016.01.001</p>
<p>Cuesta, F., Muriel, P., Llambí, L.D., Halloy, S., Aguirre, N., Beck, S., Carilla, J., Meneses, R.I., Cuello, S., Grau, A., Gámez, L.E., Irazábal, J., Jácome, J., Jaramillo, R., Ramárez, L., Samaniego, N., Súarez-Duque, D., Thompson, N., Tupayachi, A., Viñas, P ., Yager, K., Becerra, M.T., Pauli, H. &amp; Gosling, W.D. (2017) Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. <em>Ecography</em> 40: 1381–1394.&nbsp; https://doi.org/10.1111/ecog.02567</p>
<p>de Villalobos, A. (2008) Senecio leucopeplus. <em>The IUCN Red List of Threatened Species</em> 2008: e.T133711A3874098. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133711A3874098.en</p>
<p>De Vos, J.M., Joppa, L.N., Gittleman, J.L., Stephens, P.R. &amp; Pimm, S.L. (2015) Estimating the normal background rate of species extinction. <em>Conservation Biology</em> 29: 452–462. &nbsp;https://doi.org/10.1111/cobi.12380</p>
<p>DFA (2017) Documenta Florae Australis. IBODA, IMBIV, IBONE. Available from: http://www.darwin.edu.ar/iris/ (Accessed March 2021)</p>
<p>Dinerstein, E., Olson, D.M., Graham, D.J., Webster, A.L., Primm, S.A., Bookbinder, M.P &amp; Ledec, G. (1995) <em>Una evaluación del estado de conservación de las eco-regiones terrestres de América Latina y el Caribe.</em> Banco Mundial: Washington DC., 135 pp.</p>
<p>Dirzo, R. &amp; Raven, P.H. (2003) Global state of biodiversity and loss. <em>Annual Review of Environment and Resources</em> 28: 137–167. &nbsp;https://doi.org/10.1146/annurev.energy.28.050302.105532</p>
<p>Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.P. &amp; Guisan, A. (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. <em>Diversity and Distributions</em> 17 (6): 1122–1131. &nbsp;https://doi.org/10.1111/j.1472-4642.2011.00792.x</p>
<p>Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnböck, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J., Psomas, A., Schmatz, D.R., Silc, U., Vittoz, P. &amp; Hülber, K. (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. <em>Nature Climate Change</em> 2 (8): 619–622. &nbsp;https://doi.org/10.1038/nclimate1514</p>
<p>Elías, G.D.V. &amp; Aagesen, L. (2019) Areas of endemism and recent speciation in the Southern Cone of South America, using Senecio (Asteraceae) as a proxy. <em>Biological Journal of the Linnean Society</em> 128: 70–82. https://doi.org/10.1093/biolinnean/blz070</p>
<p>Ferrier, S. &amp; Guisan, A. (2006) Spatial modelling of biodiversity at the community level. <em>Journal of Applied Ecology</em> 43 (3): 393–404.&nbsp; https://doi.org/10.1111/j.1365-2664.2006.01149.x</p>
<p>Filardi, F.L.R., Barros, F.D., Baumgratz, J.F.A., Bicudo, C.E., Cavalcanti, T.B., Coelho, M.A.N., <em>et al.</em> (2018) Brazilian Flora 2020: innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). <em>Rodriguésia</em> 69 (4): 1513–1527. https://doi.org/10.1590/2175-7860201869402</p>
<p>Gallagher, R.V., Allen, S., Rivers, M.C., Allen, A.P., Butt, N., Keith, D., Auld, T.D., Enquist, B.J., Wright, I.J., Possingham, H.P., Espinosa-Ruiz, S., Dimitrova, N. &amp; Mifsud, J.C.O. (2020) Global shortfalls in extinction risk assessments for endemic flora. <em>bioRxiv.</em> https://doi.org/10.1101/2020.03.12.984559</p>
<p>Gaston, K.J. (1994) <em>Rarity.</em> Springer, Dordrecht, 205 pp. https://doi.org/10.1007/978-94-011-0701-3</p>
<p>Giraudoux, P. (2021) pgirmess: Spatial Analysis and Data Mining for Field Ecologists. R package version 1.7.0. Available from: https://CRAN.R-project.org/package=pgirmess (accessed March 2021)</p>
<p>Godoy-Bürki, A.C., Ortega-Baes, P., Sajama, J.M. &amp; Aagesen, L. (2014) Conservation priorities in the Southern Central Andes: mismatch between endemism and diversity hotspots in the regional flora. <em>Biodiversity and Conservation</em> 23 (1): 81–107. &nbsp;https://doi.org/10.1007/s10531-013-0586-1</p>
<p>Gonzales, J.A. (2009) Climatic change and other anthropogenic activities are affecting environmental services on the Argentina Northwest (ANW). <em>IOP Conference Series, Earth and Environmental Science</em> 6: 302014. &nbsp;https://doi.org/10.1088/1755-1307/6/30/302014</p>
<p>Grau, R.H., Gasparri, I.N. &amp; Aide, M.T. (2005) Agriculture expansion and deforestation in seasonally dry forests of north-west Argentina. <em>Environmental Conservation</em> 32: 140–148. https://doi.org/10.1017/S0376892905002092</p>
<p>Guisan, A. &amp; Rahbek, C. (2011) SESAM–a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. <em>Journal of Biogeography</em> 38: 1433–1444. &nbsp;https://doi.org/10.1111/j.1365-2699.2011.02550.x</p>
<p>Halloy, S.R. &amp; Mark, A.F. (2003) Climate-change effects on alpine plant biodiversity: A New Zealand perspective on quantifying the threat. <em>Arctic, Antarctic, and Alpine Research</em> 35: 248–254. https://doi.org/10.1657/1523-0430(2003)035[0248:CEOAPB]2.0.CO;2</p>
<p>Halpin, P.N. (1997) Global climate change and natural-area protection: Management responses and research directions. <em>Ecological Applications</em> 7: 828–843. https://doi.org/10.1890/1051-0761(1997)007[0828:GCCANA]2.0.CO;2</p>
<p>Hannah, L., Midgley, G., Andelman, S., Araújo, M., Hughes, G., Martinez-Meyer, E., Pearson, R. &amp; Williams, P. (2007) Protected area needs in a changing climate. <em>Frontiers in Ecology and the Environment</em> 5 (3): 131–138. &nbsp;https://doi.org/10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2</p>
<p>Heywood, V.H. (2019) Conserving plants within and beyond protected areas—Still problematic and future uncertain. <em>Plant Diversity</em> 41: 36–49. &nbsp;https://doi.org/10.1016/j.pld.2018.10.001</p>
<p>Hijmans, R.J. (2020) raster: Geographic Data Analysis and Modeling. R package version 3.4-5. Available from: https://CRAN.R-project.org/package=raster (accessed March 2021)</p>
<p>Hortal, J., de Bello, F., Diniz-Filho, J.A.F., Lewinsohn, T.M., Lobo, J.M. &amp; Ladle, R.J. (2015) Seven shortfalls that beset large-scale knowledge of biodiversity. <em>Annual Review of Ecology, Evolution, and Systematics</em> 46: 523–549. &nbsp;https://doi.org/10.1146/annurev-ecolsys-112414-054400</p>
<p>Humphreys, A.M., Govaerts, R., Ficinski, S.Z., Nic Lughadha, E. &amp; Vorontsova, M.S. (2019) Global dataset shows geography and life form predict modern plant extinction and rediscovery. <em>Nature Ecology &amp; Evolution</em> 3: 1043–1047. https://doi.org/10.1038/s41559-019-0906-2</p>
<p>Isaac, N.J., Turvey, S.T., Collen, B., Waterman, C. &amp; Baillie, J.E. (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. <em>PloS One</em> 2 (3): e296. https://doi.org/10.1371/journal.pone.0000296</p>
<p>IUCN Species Survival Commission. (2012) IUCN Red List categories and criteria, version 3.1. Gland: IUCN. [https://portals.iucn.org/library/sites/library/files/documents/RL-2001-001.pdf]</p>
<p>IUCN Standards and Petitions Committee. (2019) Guidelines for Using the IUCN Red List Categories and Criteria, version 14. Prepared by the Standards and Petitions Committee. Available from: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed 13 September 2021)</p>
<p>Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E. &amp; Kessler, M. (2017) Climatologies at high resolution for the earth’s land surface areas. <em>Scientific Data</em> 4: 170122. https://doi.org/10.1038/sdata.2017.122</p>
<p>Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P. &amp; Kessler, M. (2018) <em>Data from: Climatologies at high resolution for the earth’s land surface areas. </em>Dryad Digital Repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4</p>
<p>Knapp, W.M., Frances, A., Noss, R., Naczi, R.F., Weakley, A., Gann, G.D., Baldwin, B.G., Miller, J., McIntyre, P., Mishler, B.D., Moore, G., Olmstead, R.G., Strong, A., Gluesenkam, D. &amp; Kennedy, K. (2020) Regional records improve data quality in determining plant extinction rates. <em>Nature Ecology &amp; Evolution</em> 4: 512–514. https://doi.org/10.1038/s41559-020-1146-1</p>
<p>Lean, G., Hinrichsen, D. &amp; Markham, A. (1990) <em>Atlas of the Environment.</em> Arrow Books Ltd, London, 192 pp.</p>
<p>Le Roux, J.J., Hui, C., Castillo, M.L., Iriondo, J.M., Keet, J.H., Khapugin, A.A., Médail, F., Rejmánek, M., Theron, G., Yannelli, F.A. &amp; Hirsch, H. (2019) Recent Anthropogenic Plant Extinctions Differ in Biodiversity Hotspots and Coldspots. <em>Current Biology</em> 29: 2912–2918. &nbsp;https://doi.org/10.1016/j.cub.2019.07.063</p>
<p>Luebert, F. &amp; Weigend, M. (2014) Phylogenetic insights into Andean plant diversification. <em>Frontiers in Ecology and Evolution</em> 2: 27.&nbsp; https://doi.org/10.3389/fevo.2014.00027</p>
<p>Martínez, G.A., Arana, M.D., Oggero, A.J. &amp; Natale, E.S. (2017) Biogeographical relationships and new regionalisation of high-altitude grasslands and woodlands of the central Pampean ranges (Argentina), based on vascular plants and vertebrates. <em>Australian Systematic Botany</em> 29 (6): 473–488.&nbsp; https://doi.org/10.1071/SB16046</p>
<p>Mishler, B.D., Knerr, N., González-Orozco, C.E., Thornhill, A.H., Laffan, S.W. &amp; Miller, J.T. (2014) Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian acacia. <em>Nature Communications</em> 5: 4473.&nbsp; https://doi.org/10.1038/ncomms5473</p>
<p>Morea, J.P. (2014) Situación actual de la gestión de las áreas protegidas de la Argentina. Problemáticas actuales y tendencias futuras. <em>Revista Universitaria de Geografía</em> 23 (1): 57–75.</p>
<p>Morello, J., Matteucci, S.D., Rodriguez, A.F. &amp; Silva, M.E. (2012) <em>Ecorregiones y complejos Ecosistémicos de Argentina.</em> Orientación Gráfica Editora, Buenos Aires, 752 pp.</p>
<p>Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A. &amp; Kent, J. (2000) Biodiversity hotspots for conservation priorities. <em>Nature</em> 403: 853–858.&nbsp; https://doi.org/10.1038/35002501</p>
<p>Naimi, B., Hamm, N.A., Groen, T.A., Skidmore, A.K. &amp; Toxopeus, A.G. (2014) “Where is positional uncertainty a problem for species distribution modelling”. <em>Ecography</em> 37: 191–203.&nbsp; https://doi.org/10.1111/j.1600-0587.2013.00205.x</p>
<p>Nanni, A.S., Rodríguez, M.P., Rodríguez, D., Regueiro, M.N., Periago, M.E., Aguiar, S., Ballari, S., Blundo, C., Derlindati, E., Di Blanco, Y., Eljall, A., Grau, H.R., Herrera, L., Huertas Herrera, A., Izquierdo, A.E., Lescano, J.N., Macchi, L., Mazzini, F., Milkovic, M., Montti, L., Paviolo, A., Pereyra, M., Quintana, R., Quiroga, V., Renison, D., Santos Beade, M., Schaaf, A. &amp; Gasparri, N.I. (2020) Presiones sobre la conservación asociadas al uso de la tierra en las ecorregiones terrestres de la Argentina. <em>Ecología Austral</em> 30 (2): 304–320.&nbsp; https://doi.org/10.25260/EA.20.30.2.0.1056</p>
<p>Newbold, T., Gilbert, F., Zalat, S., El-Gabbas, A. &amp; Reader, T. (2009) Climate-based models of spatial patterns of species richness in Egypt’s butterfly and mammal fauna. <em>Journal of Biogeography</em> 36 (11): 2085–2095.&nbsp; https://doi.org/10.1111/j.1365-2699.2009.02140.x</p>
<p>Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., Choimes, A., Collen, B., Day, J., De Palma, A., Dýìaz, S., Echeverria-Londoño, S., Edgar, M.J., Feldman, A., Garon, M., Harrison, M.L.K, Alhusseini, T., Ingram, D.J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, L., Kleyer, M., Laginha Pinto Correia, D., Martin, C.D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R.P., Purves, D.R., Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M., Mace, G.M., Scharlemann, J.P.W &amp; Purvis, A. (2015) Global effects of land use on local terrestrial biodiversity. <em>Nature</em> 520 (7545): 45–50.&nbsp; https://doi.org/10.1038/nature14324</p>
<p>Newbold, T., Hudson, L.N., Contu, S., Hill, S.L.L., Beck, J., Liu, Y., Meyer, C., Phillips, H.R.P., Scharlemann, J.P.W. &amp; Purvis, A. (2018) Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. <em>PLoS Biology</em> 16: e2006841.&nbsp; https://doi.org/10.1371/journal.pbio.2006841</p>
<p>Nic Lughadha, E., Walker, B.E., Canteiro, C., Chadburn, H., Davis, A.P., Hargreaves, S., Lucas, E.J., Schuiteman, A., Williams, E., Bachman, S.P., Baines, D., Barker, A., Budden, A.P., Carretero, J., Clarkson, J.J., Roberts, A. &amp; Rivers, M.C. (2018) The use and misuse of herbarium specimens in evaluating plant extinction risks. <em>Philosophical Transactions of the Royal Society B</em> 374 (1763): 20170402.&nbsp; https://doi.org/10.1098/rstb.2017.0402</p>
<p>Nic Lughadha, E., Bachman, S.P., Leão, T.C.C., Forest, F., Halley, J.M., Moat, J., Acedo, C., Bacon, K.L., Brewer, R.F.A., Gâteblé, G., Gonçalves, S.C., Govaerts, R., Hollingsworth, P.M., Krisai-Greilhuber, I., de Lirio, E.J., Moore, P.G.P., Negrão, R., Onana, J.M., Rajaovelona, L.R., Razanajatovo, H., Reich, P.B., Richards, S.L., Rivers, M.C., Cooper, A., Iganci, J., Lewis, G.P., Smidt, E.C., Antonelli, A., Mueller, G.M. &amp; Walker, B.E. (2020) Extinction risk and threats to plants and fungi. <em>Plants, People, Planet</em> 2: 389–408.&nbsp; https://doi.org/10.1002/ppp3.10146</p>
<p>Oliveira, U., Pereira Paglia, A., Brescovit, A.D., de Carvalho, C.J.B., Paiva Silva, D., Rezende, D.T., Sá Fortes Leite, F., Nogueira Batista, J.A., Peixoto Pena Barbosa, J.P., Stehmann, J.R., Ascher, J.S., Ferreira de Vasconcelos, M., Löwenberg-Neto, P., Guimaräes Dias, P., De Marco Jr, P., Gianluppi Ferro, V. &amp; Santos, A.J. (2016) The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. <em>Diversity and Distributions</em> 22: 1232–1244.&nbsp; https://doi.org/10.1111/ddi.12489</p>
<p>Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’amico, J.A, Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P. &amp; Kassem, K.R. (2001) Terrestrial ecoregions of the world: A new map of life on Earth. <em>BioScience</em> 51: 933–938.&nbsp; https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2</p>
<p>Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A., Webster, A.J., Ding, T., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Blackburn, T.M., Gaston, K.J. &amp; Owens, I.P. (2005) Global hotspots of species richness are not congruent with endemism or threat. <em>Nature</em> 436 (7053): 1016–1019.&nbsp; https://doi.org/10.1038/436919a</p>
<p>Ortega-Baes, P., Bravo, S., Sajama, J., Sühring, S., Arrueta, J., Sotola, E., Alonso-Pedano, M., Godoy-Bürki, A.C., Frizza, N.R., Galíndez, G., Gorostiague, P., Barrionuevo, A. &amp; Scopel, A. (2012) Intensive field surveys in conservation planning: Priorities for cactus diversity in the Saltenian Calchaquíes Valleys (Argentina). <em>Journal of Arid Environments</em> 82: 91–97.&nbsp; https://doi.org/10.1016/j.jaridenv.2012.02.005</p>
<p>Oyarzabal, M., Clavijo, J.R., Oakley, L.J., Biganzoli, F., Tognetti, P.M., Barberis, I.M., Maturo, H.M., Aragón, R., Campanello, P.I., Prado, D., Oesterheld, M. &amp; León, R.J.C. (2018) Unidades de vegetación de la Argentina. <em>Ecología Austral</em> 28: 40–63.&nbsp; https://doi.org/10.25260/EA.18.28.1.0.399</p>
<p>Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., Roslin, T. &amp; Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. <em>Ecology Letters</em> 20 (5): 561–576.&nbsp; https://doi.org/10.1111/ele.12757</p>
<p>Palchetti, M.V., Cantero, J.J. &amp; Barboza, G.E. (2020) Solanaceae diversity in South America and its distribution in Argentina. <em>Anais da Academia Brasileira de Ciências</em> 92 (2): 1–17.&nbsp; https://doi.org/10.1590/0001-37652020201900117</p>
<p>Paruelo, J.M., Guerschman, J.P., Piñeiro, G., Jobbagy, E.G., Verón, S.R., Baldi, G. &amp; Baeza, S. (2006) Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. <em>Agrociencia</em> 10 (2): 47–61.</p>
<p>Pebesma, E.J. &amp; Bivand, R.S. (2005) Classes and methods for spatial data in R. <em>R News</em> 5 (2): 9–13&nbsp; https://cran.r-project.org/doc/Rnews/</p>
<p>Perrigo, A., Hoorn, C. &amp; Antonelli, A. (2020) Why mountains matter for biodiversity. <em>Journal of Biogeography</em> 47 (2): 315–325.&nbsp; https://doi.org/10.1111/jbi.13731</p>
<p>Prendergast, J.R., Quinn, R.M., Lawton, J.H., Eversham, B.C. &amp; Gibbons, D.W. (1993) Rare species, the coincidence of diversity hotspots and conservation strategies. <em>Nature</em> 365: 335–337.&nbsp; https://doi.org/10.1038/365335a0</p>
<p>R Core Team. (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: https://www.R-project.org (accessed March 2021)</p>
<p>Rahbek, C., Borregaard, M.K., Antonelli, A., Colwell, R.K., Holt, B.G., Nogues-Bravo, D., Rasmussen, C.M. Richardson, K., Rosing, M.T., Whittaker, R.J. &amp; Fjeldså, J. (2019) Building mountain biodiversity: Geological and evolutionary processes. <em>Science</em> 365 (6458): 1114–1119.&nbsp; https://doi.org/10.1126/science.aax0151</p>
<p>Ramírez-Albores, J.E., Prieto-Torres, D.A., Gordillo-Martínez, A., Sánchez-Ramos, L.E. &amp; Navarro-Sigüenza, A.G. (2021) Insights for protection of high species richness areas for the conservation of Mesoamerican endemic birds. <em>Diversity and Distributions</em> 27 (1): 18–33. https://doi.org/10.1111/ddi.13153</p>
<p>Redding, D.W., DeWolff, C.V. &amp; Mooers, A.Ø. (2010) Evolutionary distinctiveness, threat status, and ecological oddity in primates. <em>Conservation Biology</em> 24 (4): 1052–1058.&nbsp; https://doi.org/10.1111/j.1523-1739.2010.01532.x</p>
<p>Rejmánek, M. (2018) Vascular plant extinctions in California: A critical assessment. <em>Diversity and Distributions</em> 24 (1): 129–136.&nbsp; https://doi.org/10.1111/ddi.12665</p>
<p>Ricketts, T.H., Dinerstein, E., Boucher, T., Brooks, T.M., Butchart, S.H.M., Hoffmann, M., Lamoreux, J.F., Morrison, J., Parr, M., Pilgrim, J.D., Rodrigues, A.S.L., Sechrest, W., Wallace, G.E., Berlin, K., Bielby, J., Burgess, N.D., Church, D.R., Cox, N., Knox, D., Loucks, C., Luck, G.W., Master, L.L., Moore, R., Naidoo, R., Ridgely, R., Schatz, G.E., Shire, G., Strand, H., Wettengel, W. &amp; Wikramanayake, E. (2005) Pinpointing and preventing imminent extinctions. <em>Proceedings of the National Academy of Sciences</em> 102 (51): 18497–18501. https://doi.org/10.1073/pnas.0509060102</p>
<p>Rodrigues, A.S., Pilgrim, J.D., Lamoreux, J.F., Hoffmann, M. &amp; Brooks, T.M. (2006) The value of the IUCN Red List for conservation. <em>Trends in Ecology &amp; Evolution</em> 21 (2): 71–76.&nbsp; https://doi.org/10.1016/j.tree.2005.10.010</p>
<p>Rousset, F. &amp; Ferdy, J.B. (2014) Testing environmental and genetic effects in the presence of spatial autocorrelation. <em>Ecography</em> 37 (8): 781–790. http://dx.doi.org/10.1111/ecog.00566</p>
<p>Salariato, D.L. &amp; Zuloaga, F.O. (2020) Diversity patterns and conservation status of native argentinean crucifers (Brassicaceae). <em>Darwiniana, nueva serie</em> 8 (2): 530–566.&nbsp; https://doi.org/10.14522/darwiniana.2020.82.922</p>
<p>Schatz, G.E. (2002) Taxonomy and herbaria in service of plant conservation: Lessons from Madagascar’s endemic families. <em>Annals of the Missouri Botanical Garden</em> 89: 145–152.&nbsp; https://doi.org/10.2307/329855</p>
<p>Schatz, G.E. (2009) Plants on the IUCN Red List: setting priorities to inform conservation. <em>Trends in Plant Science</em> 14 (11): 638–642.&nbsp; https://doi.org/10.1016/j.tplants.2009.08.012</p>
<p>Sharrock, S. (2012) <em>GSPC: a guide to the GSPC. All the targets, objectives and facts. </em>Botanic Gardens Conservation International (BGCI), Surrey, 36 pp.</p>
<p>Stévart, T., Dauby, G., Lowry, P.P., Blach-Overgaard, A., Droissart, V., Harris, D.J., Mackinder, B.A., Schatz, G.E., Sonké, B., Sosef, M.S.M., Svenning, J.C., Wieringa, J.J. &amp; Couvreur, T.L.P. (2019) A third of the tropical African flora is potentially threatened with extinction. <em>Science advances</em> 5 (11): eaax9444.&nbsp; https://doi.org/10.1126/sciadv.aax9444</p>
<p>Stuart, S.N., Wilson, E.O., McNeely, J.A., Mittermeier, R.A. &amp; Rodríguez, J.P. (2010) The barometer of life. <em>Science</em> 328 (5975): 177.&nbsp; https://doi.org/10.1126/science.1188606</p>
<p>Swenson, N.G. (2014) <em>Functional and Phylogenetic Ecology in R.</em> Springer, New York, 212 pp.</p>
<p>Trabucco, A. &amp; Zomer, R. (2019) Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2. Available from: https://doi.org/10.6084/m9.figshare.7504448.v3 (accessed August 2020)</p>
<p>Tucker, C.M., Cadotte, M.W., Davies, T.J. &amp; Rebelo, T.G. (2012) Incorporating geographical and evolutionary rarity into conservation prioritization. <em>Conservation Biology</em> 26 (4): 593–601.&nbsp; https://doi.org/10.1111/j.1523-1739.2012.01845.x</p>
<p>Tucker, C.M., Cadotte, M.W., Carvalho, S.B., Davies, T.J., Ferrier, S., Fritz, S.A., Grenyer, R., Helmus, M.R., Jin, L.S., Mooers, A.O., Pavoine, S., Purschke, O., Redding, D.W., Rosauer, D.F., Winter, M. &amp; Mazel, F. (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. <em>Biological Reviews</em> 92 (2): 698–715.&nbsp; https://doi.org/10.1111/brv.12252</p>
<p>UNEP-WCMC &amp; IUCN. (2021) Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM). UNEP-WCMC &amp; IUCN, Cambridge. Available from: www.protectedplanet.net (Accessed April 2021)</p>
<p>USGS (2021) <em>Digital Elevation-Global 30 Arc-Second Elevation (GTOPO30). </em>http://dx.doi.org/10.5066/F7DF6PQS</p>
<p>Urban, M.C. (2015) Accelerating extinction risk from climate change. <em>Science</em> 348: 571–573.&nbsp; https://doi.org/10.1126/science.aaa4984</p>
<p>Vallejos, M., Volante, J.N., Mosciaro, M.J., Vale, L.M., Bustamante, M.L. &amp; Paruelo, J.M. (2015) Transformation dynamics of the natural cover in the Dry Chaco ecoregion: a plot level geo-database from 1976 to 2012. <em>Journal of Arid Environments</em> 123: 3–11.&nbsp; https://doi.org/10.1126/science.aaa4984</p>
<p>Volante, J.N., Alcaraz-Segura, D., Mosciaro, M.J., Viglizzo, E.F. &amp; Paruelo, J.M. (2012) Ecosystem functional changes associated with land clearing in NW Argentina. <em>Agriculture, Ecosystems &amp; Environment </em>154: 12–22.&nbsp; https://doi.org/10.1016/j.agee.2011.08.012</p>
<p>Wei, T. &amp; Simko, V. (2017) R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). Available from: https://github.com/taiyun/corrplot (accessed March 2021)</p>
<p>Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J., Watson, J.M.E. &amp; Willis, K.J. (2005) Conservation Biogeography: assessment and prospect. <em>Diversity and Distributions</em> 11: 3–23.&nbsp; https://doi.org/10.1111/j.1366-9516.2005.00143.x</p>
<p>Zanotti, C.A., Keller, H.A. &amp; Zuloaga, F.O. (2020) Biodiversidad de la flora vascular de la provincia de Misiones, Región Paranaense, Argentina. <em>Darwiniana, nueva serie</em> 8 (1): 42–291.&nbsp; https://doi.org/10.14522/darwiniana.2020.81.878</p>
<p>Zuloaga, F.O., Morrone, O. &amp; Rodríguez, D. (1999) Análisis de la biodiversidad en plantas vasculares de la Argentina. <em>Kurtziana</em> 27 (1): 17–167.</p>
<p>Zuloaga, F.O., Belgrano, M.J. &amp; Anton, A.M. (eds.) (2013) Solanaceae.<em> In: Flora Argentina</em>, vol. 13. Estudio Sigma, Buenos Aires, 349 pp.</p>
<p>Zuloaga, F.O., Belgrano, M.J. &amp; Anton, A.M. (eds.) (2014) Asteraceae<em>. In: Flora Argentina</em>, vols. 7 (1, 3). Estudio Sigma, Buenos Aires, 7 (1): 546 pp, 7 (3): 308 pp.</p>
<p>Zuloaga, F.O. &amp; Belgrano, M.J. (2015) The Catalogue of Vascular Plants of the Southern Cone and the Flora of Argentina: their contribution to the World Flora. <em>Rodriguésia</em> 66 (4): 989–1024.&nbsp; https://doi.org/10.1590/2175-7860201566405</p>
<p>Zuloaga, F.O., Belgrano, M.J. &amp; Anton, A.M. (eds.) (2015a) Dicotiledóneas basales.<em> In: Flora Argentina</em>, vol. 15. Estudio Sigma, Buenos Aires, 118 pp.</p>
<p>Zuloaga, F.O., Belgrano, M.J. &amp; Anton, A.M. (eds.) (2015b) Asteraceae.<em> In: Flora Argentina</em>, vol. 7 (2). Estudio Sigma, Buenos Aires, 526 pp.</p>
<p>Zuloaga, F.O. &amp; Belgrano, M.J. (eds.) (2016) Helechos, Licofitas y Gimnospermas.<em> In: Flora Argentina</em>, vol. 2. Estudio Sigma, Buenos Aires, 448 pp.</p>
<p>Zuloaga, F.O. &amp; Belgrano, M.J. (eds.) (2017) Begoniaceae a Violaceae.<em> In: Flora Argentina</em>, vol. 17. Estudio Sigma, Buenos Aires, 441 pp.</p>
<p>Zuloaga, F.O. &amp; Belgrano, M.J. (eds.) (2018) Lamiales, Acanthaceae a Tetrachondraceae.<em> In:</em> <em>Flora Argentina</em>, vol. 20 (1). Editorial Trama, Buenos Aires, 486 pp.</p>
<p>Zuloaga, F.O. &amp; Belgrano, M.J. (eds.) (2019) Apiales a Solanales.<em> In: Flora Argentina</em>, vol. 20 (2). Editorial Trama, Buenos Aires, 444 pp.</p>
<p>Zuloaga, F.O., Belgrano, M.J. &amp; Zanotti, C.A. (2019) Actualización del Catálogo de las Plantas Vasculares del Cono Sur. <em>Darwiniana, nueva serie</em> 7 (2): 208–278.&nbsp; https://doi.org/10.14522/darwiniana.2019.72.861</p>
<p>Zuloaga, F.O. &amp; Belgrano, M.J. (eds.) (2020) Caryophyllales (p.p), Ericales (p.p.), Gentianales (p.p).<em> In: Flora Argentina</em>, vol. 19 (1). Editorial Trama, Buenos Aires, 378 pp.</p>