Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-26
Page range: 237–251
Abstract views: 168
PDF downloaded: 1

Species delimitation of the northeastern Anatolian Symphytum (Boraginaceae) taxa

Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, Eskisehir, Turkey
Department of Biology, Faculty of Science, Hacettepe University, Çankaya, Ankara, Turkey
Eudicots Boraginaceae Species Delimitation Symphytum Symphytum asperum aggregate

Abstract

Symphytum is regarded one of the most complicated genera in terms of the classification of its members among the Boraginaceae. In addition to different infrageneric classification methods, several species complex or aggregates have been proposed to deal with the taxonomical problem of genus members. Symphytum asperum aggregate was first introduced by Kurtto, who proposed six taxa within this aggregate. However, according to further studies by different researchers based on morphological data, total number of species of the complex was variable. The number of species was reduced to three, comprising S. asperum, S. savvalense, and S. sylvaticum, after the phylogenetic and morphological studies of Tarıkahya-Hacıoğlu and Erik. However, the taxonomical status of some of these species (i.e., S. savvalense and S. sylvaticum, and S. sepulcrale), which was assigned as a member of this complex by Kurtto, has been regarded as unresolved. To solve this uncertainty, different species delimitation methods were used, including statistical parsimony network analysis (TCS), generalized mixed Yule coalescent (GMYC), and Bayesian Phylogenetics and Phylogeography (BPP) of the ITS, trnL-F and trnS-G sequence data. In addition to members of this complex, S. ibericum, which is phylogenetically nested within the S. asperum aggregate, was also used. The TCS and GMYC analyses demonstrated more complicated clusters, whereas high posterior probabilities of BPP clusters were more compatible with the morphological data. In accordance with the morphological approach of Tarıkahya-Hacıoğlu and Erik, the species delimitation analyses based on molecular data support the recognition of S. asperum, S. ibericum, S. savvalense, and S. sylvaticum as different species.

References

Ayres, D.L., Darling, A., Zwickl, D.J., Beerli, P., Holder, M.T., Lewis, P.O., Huelsenbeck, J.P., Ronquist, F., Swofford, D.L., Cummings, M.P., Rambaut, A. & Suchard, M.A. (2012) BEAGLE: An application programming interface and high-performance computing library for statistical phylogenetics. Systematic Biology 61 (1): 170–173. https://doi.org/10.1093/sysbio/syr100

Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Automatic Control 19: 716–723.

Bucknall, C. (1913) A revision of the genus Symphytum. Botanical Journal of the Linnean Society 41: 491–556.

Boissier, E. (1875) Flora Orientalis, vol. 3. H. Georg, Genève & Basel, 174 pp.

Camargo, A. & Sites, J. (2013) Species Delimitation: A decade after the renaissance, In: Pavlinov, I. (Ed.) The Species Problem - Ongoing Issues. InTech, New York, NY, pp. 225–247. https://doi.org/10.5772/52664

Chacón, J., Luebert, F., Hilger, H.H., Ovchinnikova, S., Selvi, F., Cecchi, L., Guilliams, C.M., Hasenstab-Lehman, K., Sutor?, K., Simpson, M.G. & Weigend, M. (2016) The borage family (Boraginaceae s. str.): A revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. Taxon 65 (3): 523–546. https://doi.org/10.12705/653.6

Chacón, J., Luebert, F. & Weigend, M. (2017) Biogeographic events are not correlated with diaspore dispersal modes in Boraginaceae. Frontiers in Ecology and Evolution 5: 26. https://doi.org/10.3389/fevo.2017.00026

Chase, M.W., Christenhusz, M.J.M., Fay, M.F., Byng, J.W., Judd, W.S., Soltis, D.E., Mabberley, D.J., Sennikov, A.N., Soltis, P.S., Stevens, P.F., Briggs, B., Brockington, S., Chautems, A., Clark, J.C., Conran, J., Haston, E., Möller, M., Moore, M., Olmstead, R., Perret, M., Skog, L., Smith, J., Tank, D., Vorontsova, M. & Weber, A. (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20. https://doi.org/10.1111/boj.12385

Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: A computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

Davis, P.H., Mill, R.R. & Tan, K. (1988) Flora of Turkey Volume 10. Edinburgh University Press, Edinburgh, pp. 186–189.

Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology. https://doi.org/10.1371/journal.pbio.0040088

Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. https://doi.org/10.1093/molbev/mss075

Edgar, R.C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

Ezard, T., Fujisawa, T. & Barraclough, T. (2009) Splits: Species’ Limits by Threshold Statistics. R package version 1.0. URL: [http://R-Forge.R-project. org/projects/splits/]

Fujisawa, T. & Barraclough, T.G. (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic biology 62 (5): 707–724. https://doi.org/10.1093/sysbio/syt033

Fujita, M.K., Leaché, A.D., Burbrink, F.T., McGuire, J.A. & Moritz, C. (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends in ecology & evolution, 27 (9): 480–488. https://doi.org/10.1016/j.tree.2012.04.012

Gadella, T. W. J. (1972) Cytological and hybridization studies in the genus Symphytum. Symposia Biologica Hungarica (Budapest) 12: 189–199

Gadella, T. W. & Kliphuis, E. (1972) Cytotaxonomic studies in the genus Symphytum IV. Cytogeographic investigations in Symphytum officinale L. Acta botanica neerlandica 21 (2): 169–173. https://doi.org/10.1111/j.1438-8677.1972.tb00761.x

Gadella, T.W.J., Kliphuis, E. & Perring, F.H. (1974) Cytotaxonomic studies in the genus Symphytum. VI. Some notes on Symphytum in Br?tain. Acta Botanica Neerlandica 23: 433–437. https://doi.org/10.1111/j.1438-8677.1974.tb00960.x

Greuter, W., Burdet, H. & Long, G. (1984) Med-Checklist I. Genéve and Berlin.

Gviniašvili, C.N. (1976) Kavkazskie predstaviteli roda Symphytum L. Boraginaceae Jus, Tbilisi.

Hac?o?lu, B.T. & Erik, S. (2011) Phylogeny of Symphytum L. (Boraginaceae) with special emphasis on Turkish species. African Journal of Biotechnology 10: 15483–15493. https://doi.org/10.5897/AJB11.1094

Hamilton, M.B. (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology 8: 521–523.

Hassanpour, H., Zare-Maivan, H., Sonboli, A., Kazempour-Osaloo, S., Wagner, F., Tomasello, S. & Oberprieler, C. (2018) Phylogenetic species delimitation unravels a new species in the genus Sclerorhachis (Rech.f.) Rech.f. (Compositae, Anthemideae). Plant Systematics and Evolution 304: 185–203. https://doi.org/10.1007/s00606-017-1461-4

Hilger, H.H., Selvi, F., Papini, A. & Bigazzi, M. (2004) Molecular systematics of boraginaceae tribe boragineae based on ITS1 and trnL sequences, with special reference to Anchusa s.l. Annals of Botany 94: 201–212. https://doi.org/10.1093/aob/mch132

Ho, S.Y.W. (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. Journal of Avian Biology 38: 409–414. https://doi.org/10.1111/j.2007.0908-8857.04168.x

Hu, H., Al-Shehbaz, I.A., Sun, Y., Hao, G., Wang, Q. & Liu, J. (2015) Species delimitation in Orychophragmus (Brassicaceae) based on chloroplast and nuclear DNA barcodes. Taxon 64: 714–726. https://doi.org/10.12705/644.4

Irimia, R.E., Pérez-Escobar, O.A. & Gottschling, M (2015) Strong biogeographic signal in the phylogenetic relationships of Rochefortia Sw.(Ehretiaceae, Boraginales). Plant Systematics and Evolution 301 (5): 1509–1516.

Jackson, N.D., Carstens, B.C., Morales, A.E. & O’Meara, B.C. (2017) Species delimitation with gene flow. Systematic biology 66 (5): 799–812.

Kay, K.M., Whittall, J.B. & Hodges, S.A. (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: An approximate molecular clock with life history effects. BMC Ecology and Evolution 6: 36. https://doi.org/10.1186/1471-2148-6-36

Kobrlová, L., HroneŠ, M., Kouteck?, P., Štech, M. & Trávní?ek, B. (2016) Symphytum tuberosum complex in central Europe: Cytogeography, morphology, ecology and taxonomy. Preslia 88: 77–112.

Kobrlová, L., Mandáková, T. & Hroneš, M. (2018) Taxonomic status and typification of a neglected name Symphytum leonhardtianum from the symphytum tuberosum complex (Boraginaceae). Phytotaxa 349 (3): 225–236. https://doi.org/10.11646/phytotaxa.349.3.3

Kurtto, A. (1982) Taxonomy of the Symphytum asperum aggregate (Boraginaceae), especially in Turkey. Annales Botanici Fennici 22: 319–331.

Kuznecov, N. (1910) Kavkazskie vidy roda Symphytum tourn L. iznacÌŒenie ich v istorii razvitija flory Kavkaza N[ikolaj] I[vanovicÌŒ] Kuznecov. S 2 tabl. ris. i 2 kart. Memories l’Academie Imp. des Sci. St. Petersbg. ser. 8. Physical Review Materials 25: 91–94.

Leigh, J.W. & Bryant, D. (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6 (9): 1110–1116. https://doi.org/10.1111/2041-210X.12410

Lepechin, I.I. (1805) Symphyti asperi nova species. Nova Acta Academiae Scientiarum Imperialis Petropolitanae. Praecedit Historia ejusdem Academiae 14 (2): 442–444.

Lindman, C.A.M. (1911) Über Symphytum orientale L. und Symphytum uplandicum Nym. Botaniska Notiser: 71–77.

Linnaeus, C. (1753) Species Plantarum. Volume 1. L. Salvius, Stockholm, 560 pp.

Lohse, K. (2009) Can mtDNA be used to delimit species? A response to Pons et al. (2006). Systematic Biology 58: 439–442. https://doi.org/10.1093/sysbio/syp039

Matos-Maraví, P., Wahlberg, N., Antonelli, A. & Penz, C.M. (2019) Species limits in butterflies (Lepidoptera: Nymphalidae): Reconciling classical taxonomy with the multispecies coalescent. Systematic Entomology 44: 745–756. https://doi.org/10.1111/syen.12352

Mayr E. (1976) Species Concepts and Definitions. Topics in the Philosophy of Biology. Boston Studies in the Philosophy of Science, vol 27. Springer, Dordrecht. pp. 353–371. https://doi.org/10.1007/978-94-010-1829-6_16

Mayr, E. (2000) The biological species concept. In: Wheeler, Q.D. & Meier, R. (Eds.) Species concepts and phylogenetic theory: a debate. Columbia University Press, New York, pp. 17–29.

Monaghan, M.T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D.J.G., Lees, D.C., Ranaivosolo, R., Eggleton, P., Barraclough, T.G. & Vogler, A.P. (2009) Accelerated species Inventory on Madagascar using coalescent-based models of species Delineation. Systematic Biology 58: 298–311. https://doi.org/10.1093/sysbio/syp027

Murín, A. & Májovsk?, J. (1982) Die Bedeutung der Polyploidie in der Entwicklung der in der Slowakei wachsenden Arten der Gattung Symphytum L. acta botanica universitatis comenianae 29: 1–25.

Nazaire, M., Wang, X.Q. & Hufford, L. (2014) Geographic origins and patterns of radiation of Mertensia (Boraginaceae). American Journal of Botany 101: 104–118. https://doi.org/10.3732/ajb.1300320

Paw?owski B. (1961) Uwagi o ?ywokostach–observationes ad genus Symphytum L. pertinentes. Fragmenta Floristica et Geobotanica Polonica 7: 327–356.

Paw?owski, B. (1971) Symphyta mediteranea nova vel minus cognita. Fragmenta Floristica et Geobotanica Polonica 7: 2–38.

Paw?owski, B. (1972) Symphytum L. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M. & Webb, D.A. (Eds.) Flora Europaea. Volume 3. Cambridge University Press, Cambridge, pp. 103–105.

Pease, J.B. & Hahn, M.W. (2013) More accurate phylogenies inferred from low-recombination regions in the presence of incomplete lineage sorting. Evolution 67 (8): 2376–2384. https://doi.org/10.1111/evo.12118

Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609. https://doi.org/10.1080/10635150600852011

Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25 (7): 1253–1256. https://doi.org/10.1093/molbev/msn083

Prebble, J.M. (2016) Species delimitation and the population genetics of rare plants: a case study using the New Zealand native pygmy forget-me-not group (Myosotis; Boraginaceae), a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Biology at Massey University, Manawat?, New Zealand, 269 pp.

Prebble, J.M., Meudt, H.M., Tate, J.A. & Symonds, V.V. (2019) Comparing and co-analysing microsatellite and morphological data for species delimitation in the New Zealand native Myosotis pygmaea species group (Boraginaceae). Taxon 68 (4): 731–750. https://doi.org/10.1002/tax.12096

R Core Team (2020) R: A language and environment for statistical computing. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria.

Rambaut, A. & Drummond, A.J. (2009) Tracer v 1.5. [http://beast.bio.ed.ac.uk/Tracer]

Rannala, B. & Yang, Z. (2003) Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164: 1645–1656. https://doi.org/10.1093/genetics/164.4.1645

Runemark, H. (1967) Studies in the Aegean Flora XI Procopiana (Boraginaceae) included into Symphytum. Botaniska Notiser 120: 85–94.

Sandbrink, J.M., Van Brederode, J. & Gadella, T.W.J. (1990) Phylogenetic relationships in the genus Symphytum L. (Boraginaceae). Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen 93: 295–334.

Spooner, D.M. (2016) Species delimitations in plants: Lessons learned from potato taxonomy by a practicing taxonomist. Journal of Systematics and Evolution 54: 191–203. https://doi.org/10.1111/jse.12203

Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J. & Rambaut, A. (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4: 1–5. https://doi.org/10.1093/ve/vey016

Steven, C. (1851) Observationes in Asperifolias taurico-caucasicas. Bulletin de la Société Imperiale des Naturalistes de Moscou 24: 558–609.

Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. https://doi.org/10.1007/BF00037152

Talavera, G., Dinc?, V. & Vila, R. (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4 (12): 1101–1110. https://doi.org/10.1111/2041-210X.12107

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725–2729. https://doi.org/10.1093/molbev/mst197

Tar?kahya, B. & Erik, S. (2010) Taxonomy of Symphytum asperum Lepech and S. sylvaticum Boiss (Boraginaceae) based on macro- and micro-morphology. Hacettepe Journal of Biology and Chemistry 38: 47–61.

Tar?kahya, B. (2009) The revision of Turkish Symphytum L. (Boraginaceae) genus. Hacettepe University.

Tar?kahya-Hac?o?lu, B. & Erik, S. (2013) Türkiye’de yeti?en Symphytum (Boraginaceae) taksonlar?n?n revizyonu. Ot Sistematik Botanik Dergisi 20: 23–72.

Templeton, A.R., Crandall, K.A. & Sing, C.F. (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633. https://doi.org/10.1093/genetics/132.2.619

WFO (2021) World Flora Online. Available from: http://www.worldfloraonline.org (accessed 5 August 2021)

Tutin, T.G. (1956) The genus Symphytum in Britain. Watsonia 3: 280–281.

Valdés, B. (2011) Euro+Med Plantbase - the information resource for Euro-Mediterranean plant diversity.

White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplifications and direct sequencing offungal ribosomal RNA genes for phylogenetics, In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., New York, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wickens, G.E. (1969) Revision of Symphytum L. in Turkey and adjacent areas. Notes from the Royal Botanic Garden, Edinburgh 24: 157–180.

Wickens, G.E. (1978) Symphytum L. In: Davis, P.H. (Ed.) Flora of Turkey and the East Aegean Islands, IV. Edinburgh, pp. 378–386.

Yang, Z. (2002) Likelihood and Bayes estimation of ancestral population sizes in hominoids using data from multiple loci. Genetics 162: 1811–1823. https://doi.org/10.1093/genetics/162.4.1811

Yang, Z. (2015) The BPP program for species tree estimation and species delimitation. Current Zoology 61 (5): 854–865. https://doi.org/10.1093/czoolo/61.5.854

Yang, Z. & Rannala, B. (2010) Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107: 9264–9269. https://doi.org/10.1073/pnas.0913022107

Yang, Z. & Rannala, B. (2014) Unguided species delimitation using DNA sequence data from multiple loci. Molecular Biology and Evolution 31: 3125–3135. https://doi.org/10.1093/molbev/msu279

Yule, G.U. (1925) A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis, F.R.S. Journal of the Royal Statistical Society 213: 21–87. https://doi.org/10.2307/2341419

Zhang, C., Zhang, D.X., Zhu, T. & Yang, Z. (2011) Evaluation of a Bayesian coalescent method of species delimitation. Systematic biology 60 (6): 747–761. https://doi.org/10.1093/sysbio/syr071

How to Cite

Özgi̇şi̇ K. & Tarikahya-Hacioğlu, B. (2021)

Species delimitation of the northeastern Anatolian Symphytum (Boraginaceae) taxa

. Phytotaxa 516 (3): 237–251. https://doi.org/10.11646/phytotaxa.516.3.3