Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-13
Page range: 105-117
Abstract views: 59
PDF downloaded: 2

Diplodia parva sp. nov., a novel species of the family Botryosphaeriaceae isolated from soil in Korea

School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea. Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Ministry of Food and Agriculture, Plant Protection and Regulatory Services Directorate, -Ashanti 23321, Ghana
Gabon Ministry of Agriculture, Food and Fishery, Agriculture Direction General, BP 271 Libreville, Gabon
School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea. Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
Botryosphaeriaceae Diplodia phylogeny taxonomy Fungi

Abstract

A fungal strain designated KNU16-007, belonging to the family Botryosphaeriaceae, was isolated from soil in Daegu, Korea. Phylogenetic analyses based on the concatenated nucleotide sequences of the ITS and TEF-1α regions, showed that the isolate resides in a clade together with Diplodia species but occupies a distinct phylogenetic position. Conidial dimensions of strain KNU16-007 (22.7–29.3 μm × 8.9–10.9 μm) or its conidial length:width ratio were significantly differed from those of the closely related D. sapinea, D. intermedia, D. scrobiculata, D. seriata, D. crataegicola, D. rosacearum, and D. citricarpa clearly indicating morphological differences from these species. Detailed descriptions, illustrations, and discussions regarding the morphological and phylogenetic analyses of the closely related species are provided to support the novelty of the isolated species. The results of phylogenetic analysis and morphological observations indicate that strain KNU16-007 represents a novel species in the genus Diplodia, for which the name Diplodia parva sp. nov. is proposed.

References

<p>Ariyawansa, H.A., Hyde, K.D., Jayasiri, S.C., Buyck, B., Chenthana, K.W.T., Dai, D.Q., Dai, Y.C, Daranagama, D.A., Jayawardena, R.S., Lücking, R., Ghobad-Nejhad, M., Niskanen, T., Thambugala, K.M., Voigt,K., Zhao, R.L., LiG, J., Doilom, M., Boonmee, S., Yang, Z.L., Cai, Q., Cui, Y.Y., Bahkali, A.H., Chen, J., Cui, B.K., Chen, J.J., Dayarathne, M.C., Dissanayake, A.J., Ekanayaka, A.H., Hashimoto, A., Hongsanan, S., Jones, E.B.G., Larsson, E., Li, W.J., Li, Q.R., Liu, J.K., Luo, Z.L., Maharachchikumbura, S.S.N., Mapook, A., McKenzie, E.H.C., Norphanphoun, C., Konta, S., Pang, K.L., Perera, R.H., Phookamsak, R., Phukhamsakda, C., Pinruan, U., Randrianjohany, E., Singtripop, C., Tanaka, K., Tian, C.M., Tibpromma, T., Abdel-Wahab, M.A., Wanasinghe, D.N., Wijayawardene, N.N., Zhang, J.F., Zhang, H., Abdel-Aziz, F.A., Wedin, M., Westberg, M., Ammirati, J.F., Bulgakov, T.S., Lima, D.X., Callaghan, T.M., Callac, P., Chang, C.H., Coca, L.F., Dal-Forno, M., Dollhofer, V., Fliegerova, K., Greiner, K., Griffith, G.W., Ho, H.M., Hofstetter, V., Jeewon, R., Kang, J.C., Wen, T.C., Kirk, P.M., Kytövuori, I., Lawrey, J.D., Xing, J., Li, H., Liu, Z.Y., Liu, X.Z., Liimatainen, K., Lumbsch, T.H., Matsumura, M., Moncada, B., Nuankaew, S., Parnmen, S., Santiago, A.L.C.M.D.A., Sommai, S., Song, Y., deSouza, C.A.F., deSouza-Motta, C.M., Su, H.Y., Suetrong, S., Wang, Y., Wei, S.F., Yuan, H.S., Zhou, L.W., Réblová, M., Fournier, J., Camporesi, E., Luangsa-ard, J.J., Tasanathai, K., Khonsanit, A., Thanakitpipattana, D., Somrithipol, S., Diederich, P., Millanes, A.M., Common, R.S., Stadler, M., Yan, J.Y., Li, X.H., Lee, H.W., Nguyen, T.T.T., Lee, H.B., Battistin, E., Marsico, O., Vizzini, A., Vila, J., Ercole, E., Eberhardt, U., Simonini, G., Wen, H.A., Chen, X.H., Miettinen, O., Spirin, V. &amp; Hernawati, H. (2015)&nbsp;Fungal diversity notes 111–252 – taxonomic and phylogenetic contributions to fungal taxa. <em>Fungal Diversity</em> 75 (1): 27–274<em>.</em>&nbsp; https://doi.org/10.1007/s13225-015-0346-5&nbsp;</p>
<p>Alves, A., Correia, A. &amp; Phillips, A.J.L. (2006) Multi-gene genealogies and morphological data support <em>Diplodia cupressi sp. nov.</em>, previously recognized as <em>D. pinea </em>f. sp. <em>cupressi</em>, as a distinct species. <em>Fungal Diversity</em> 23: 1–15. [http://www.fungaldiversity.org/fdp/sfdp/23-1.pdf]</p>
<p>Bihon, W., Slippers, B., Burgess, T., Wingfield,&nbsp;M.J. &amp; Wingfield,&nbsp;B.D. (2010) <em>Diplodia scrobiculata</em> found in the southern hemisphere. <em>Forest Pathology</em> 41 (3): 175–181. https://doi.org/10.1111/j.1439-0329.2010.00649.x</p>
<p>Carbone, I. &amp; Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. <em>Mycologia</em> 91 (3): 553–556. https://doi.org/10.1080/00275514.1999.12061051</p>
<p>Coutinho, I.B.L., Cardoso, J.E., Lima, C.S., Lima, J.S., Gonçalves, F.J.T., Silva, A.M.S. &amp; Freire, F.C.O. (2018) An emended description of <em>Neofusicoccum brasiliense </em>and characterization of <em>Neoscytalidium </em>and <em>Pseudofusicoccum </em>species associated with tropical fruit plants in northeastern Brazil. <em>Phytotaxa</em> 358 (3): 251–264. https://doi.org/10.11646/phytotaxa.358.3.3</p>
<p>Crous, P.W., Slippers, B., Wingfield, M.J., Reeder, J., Marasas, W.F.O., Philips, A.J.L., Alves, A., Burgess, T., Barber, P. &amp; Groenewald, J.Z. (2006) Phylogenetic lineages in the Botryosphaeriaceae. <em>Studies in Mycology</em> 55 (5): 235–253. https://doi.org/10.3114/sim.55.1.235</p>
<p>Damm, U., Crous, P.W. &amp; Fourie, P.H. (2007) Botryosphaeriaceae as potential pathogens of <em>Prunus </em>species in South Africa, with descriptions of <em>Diplodia africana </em>and <em>Lasiodiplodia plurivora sp. nov.</em> <em>Mycologia</em> 99 (5): 664–680. https://doi.org/10.1080/15572536.2007.11832531</p>
<p>Das, K., Lee, S.Y. &amp; Jung, H.Y. (2019) <em>Cladophialophora lanosa</em> <em>sp. nov.</em>, a new species isolated from soil. <em>Mycobiology</em> 47 (2): 173–179. https://doi.org/10.1080/12298093.2019.1611242</p>
<p>Das, K., Lee, S.Y., Jung, H.Y. (2020) Molecular and morphological characterization of two novel species collected from soil in Korea. <em>Mycobiology</em> 48 (1): 9–19. https://doi.org/10.1080/12298093.2019.1695717</p>
<p>Dissanayake, A.J., Phillips, A.J.L., Li, X.H &amp; Hyde, K.D. (2016) Botryosphaeriaceae: current status of genera and species. <em>Mycosphere </em>7 (7): 1001–1073. https://doi.org/10.5943/mycosphere/si/1b/13</p>
<p>Doilom, M., Shuttleworth, L.A., Roux, J., Chukeatirote, E. &amp; Kevin, H.D. (2015) Botryosphaeriaceae associated with <em>Tectona grandis </em>(teak) in Northern Thailand.<em> Phytotaxa</em> 233 (1): 001–026. http://dx.doi.org/10.11646/phytotaxa.233.1.1</p>
<p>Evidente, A., Venturi, V., Masi, M., Degrassi, G., Cimmino, A., Maddau, L. &amp; Andolfi, A. (2011) <em>In vitro</em> antibacterial activity of sphaeropsidins and chemical derivatives toward <em>Xanthomonas oryzae</em> pv.<em> oryzae</em>, the causal agent of rice bacterial blight. <em>Journal of Natural Products</em> 74 (12): 2520−2525. https://doi.org/10.1021/np200625m</p>
<p>Evidente, A., Masi, M., Linaldeddu, B.T., Franceschini, A., Scanu, B., Cimmino, A., Andolfi, A., Motta, A. &amp; Madda, L. (2012) Afritoxinones A and B, dihydrofuropyran-2-ones produced by <em>Diplodia africana</em> the causal agent of branch dieback on <em>Juniperus phoenicea</em>. <em>Phytochemistry</em> 77 (5): 245–250. https://doi.org/10.1016/j.phytochem.2012.01.011</p>
<p>Farr, D.F. &amp; Rossman, A.Y. (2020) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available from: https://nt.ars-grin.gov/fungaldatabases/ (accessed 10 January 2020)</p>
<p>Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. <em>Molecular Biology&nbsp;and&nbsp;Evolution</em> 17: 368–376. https://doi.org/10.1007/BF01734359</p>
<p>Fitch, W.M. (1971) Toward defining the course of evolution: minimum change for a specific tree topology. <em>Systematic Zoology</em> 20 (4): 406–416. https://doi.org/10.2307/2412116</p>
<p>Giambra, S., Piazza, G., Alves, A., Mondello, V., Berbegal, M., Armengol, J. &amp; Burruano, S. (2016) Botryosphaeriaceae species associated with diseased loquat trees in Italy and description of <em>Diplodia rosacearum sp. nov.</em> <em>Mycosphere </em>7 (7): 978–989. https://doi.org/10.5943/mycosphere/si/1b/9</p>
<p>Glass, N.L. &amp; Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. <em>Applied and Environmental Microbiology</em> 61 (4): 1323–1330. http://dx.doi.org/10.1128/aem.61.4.1323-1330.1995</p>
<p>Jacobs, K.A. &amp; Rehner, S.A. (1998) Comparison of cultural and morphological characters and its sequences in anamorphs of Botryosphaeria and related taxa. <em>Mycologia </em>90 (4): 601–610. https://doi.org/10.1080/00275514.1998.12026949</p>
<p>Jami, F., Slippers, B., Wingfield, M.J. &amp; Gryzenhout, M. (2012) Five new species of the Botryosphaeriaceae from <em>Acacia karoo </em>in South Africa. <em>Cryptogamie, Mycologie</em> 33 (3): 245–266. https://doi.org/10.7872/crym.v33.iss3.2012.245</p>
<p>Jayawardena, R.S., Hyde, K.D., McKenzie, E.H.C., Jeewon, R., Phillips, A.J.L., Perera, R.H., de Silva, N.I., Maharachchikumburua, S.S.N., Samarakoon, M.C., Ekanayake, A.H., Tennakoon, D.S., Dissanayake, A.J., Norphanphoun, C., Lin, C., Manawasinghe, I.S., Tian, Q., Brahmanage, R., Chomnunti, P., Hongsanan, S., Jayasiri, S.C., Halleen, F., Bhunjun, C.S., Karunarathna, A. &amp; Wang, Y. (2019) One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75. <em>Fungal Diversity</em> 98: 77–160. https://doi.org/10.1007/s13225-019-00433-6</p>
<p>Kim, G.Y.,&nbsp;Jeon, J.S. &amp;&nbsp;Kim, J.K.&nbsp;(2016) Isolation frequency characteristics of <em>Candida</em> species from clinical specimens.&nbsp;<em>Mycobiology</em> 44 (2): 99–104. https://doi.org/10.5941/MYCO.2016.44.2.99</p>
<p>Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. <em>Molecular Biology&nbsp;and&nbsp;Evolution</em> 16 (2): 111–120. https://doi.org/10.1007/bf01731581</p>
<p>Kumar, S., Stecher, G. &amp; Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. <em>Molecular Biology&nbsp;and&nbsp;Evolution</em> 33 (7): 1870–1874. https://doi.org/10.1093/molbev/msw054</p>
<p>Lallemand, B., Masi, M., Maddau, L., De Lorenzi, M., Dam, R., Cimmino, A., Moreno Y Banuls, L., Andolfi, A., Kiss, R., Mathieu, V. &amp; Evidente, A. (2012) Evaluation of in vitro anticancer activity of sphaeropsidins A–C, fungal rearranged pimarane diterpenes, and semisynthetic derivatives. <em>Phytochemistry Letters</em> 5 (4): 770–775. https://doi.org/10.1016/j.phytol.2012.08.011</p>
<p>Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. &amp; Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. <em>Bioinformatics</em> 23 (21): 2947–2948. https://doi.org/10.1093/bioinformatics/btm404</p>
<p>Lazzizera, C., Frisullo, S., Alves, A., Lopes, J.3 &amp; Phillips, A.J.L. (2008) Phylogeny and morphology of <em>Diplodia </em>species on olives in southern Italy and description of <em>Diplodia olivarum sp. nov.</em> <em>Fungal Diversity</em> 31 (NA): 63–71.</p>
<p>Linaldeddu, B.T., Maddau, L., Franceschini, A., Alves, A. &amp; Phillips, A.J.L. (2016) Botryosphaeriaceae species associated with lentisk dieback in Italy and description of <em>Diplodia insularis sp. nov.</em> <em>Mycosphere </em>7 (7): 962–977. https://doi.org/10.5943/mycosphere/si/1b/8</p>
<p>Mathieu, V., Chantôme, A., Lefranc, F., Cimmino, A., Miklos, W., Paulitschke, V., Mohr, T., Maddau, L., Kornienko, A., Berger, W., Vandier, C., Evidente, A., Delpire, E. &amp; Kiss, R. (2015) Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. <em>Cellular and Molecular Life Sciences </em>72 (19): 3731–3746. https://doi.org/10.1007/s00018-015-1902-6</p>
<p>Masi, M., Maddau, L., Linaldeddu, B.T., Cimmino, A., D’Amico, W., Scanu, B., Evidente, M., Tuzi, A. &amp; Evidente, A. (2016) Bioactive secondary metabolites produced by the oak pathogen <em>Diplodia corticola</em>. <em>Journal of Agricultural and Food Chemistry</em> 64 (1): 217–225. https://doi.org/10.1021/acs.jafc.5b05170</p>
<p>Masi, M., Nocera, P., Reveglia, P., Cimmino, A. &amp; Evidente, A. (2018) Fungal metabolites antagonists towards plant pests and human pathogens: structure-activity relationship studies. <em>Molecules</em> 23 (4): 834. https://doi.org/10.3390/molecules23040834</p>
<p>O’Donnell, K. &amp; Cigelnik, E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus <em>Fusarium </em>are nonorthologous. <em>Molecular Phylogenetics and Evolution </em>7 (1): 103–116. https://doi.org/10.1006/mpev.1996.0376</p>
<p>O’Donnell, K., Kistler, H.C., Cigelnik, E. &amp; Ploetz, R.C. (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. <em>Proceedings of the National Academy of Sciences of the United States of America</em> 95 (5): 2044–2049. https://doi.org/10.1073/pnas.95.5.2044</p>
<p>Park, S., Ten, L., Lee, S.Y., Back, C.G., Lee, J.J., Lee, H.B. &amp; Jung, H.Y. (2017) New recorded species in three genera of the Sordariomycetes in Korea. <em>Mycobiology</em> 45 (2): 64–72. https://doi.org/10.5941/MYCO.2017.45.2.64</p>
<p>Phillips, A.J.L., Alves, A., Correia, A. &amp; Luque, J. (2005) Two new species of <em>Botryosphaeria </em>with brown, 1-septate ascospores and <em>Dothiorella </em>anamorphs. <em>Mycologia </em>97 (2): 513–529. https://doi.org/10.1080/15572536.2006.11832826</p>
<p>Phillips, A.J.L., Lopes, J., Abdollahzadeh, J., Bobev, S. &amp; Alves, A. (2012) Resolving the complex of <em>Diplodia</em> species on apple and other <em>Rosaceae</em> hosts. <em>Persoonia</em> 29: 29–38. https://doi.org/10.3767/003158512X658899</p>
<p>Phillips, A.J.L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M.J., Groenewald, J.Z. &amp; Crous, P.W. (2013) The Botryosphaeriaceae: genera and species known from culture. <em>Studies in Mycology</em> 76 (1): 51–167.&nbsp; https://doi.org/10.3114/sim0021</p>
<p>Saitou, N. &amp; Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. <em>Molecular Biology&nbsp;and&nbsp;Evolution</em> 4 (4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454</p>
<p>Slippers, B. &amp; Wingfield, M.J. (2007) The Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. <em>Fungal Biology Reviews</em> 21: 90–106.&nbsp; https://doi.org/10.1016/j.fbr.2007.06.002</p>
<p>Slippers, B., Boissin, E., Phillips, A.J.L., Groenewald, J,Z,, Lombard, L., Wingfield, M.J., Postma, A., Burgess, T. &amp; Crous, P.W. (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. <em>Studies in Mycology</em> 76 (1): 31–49. https://doi.org/10.3114/sim0020</p>
<p>Smith, H., Wingfield, M.J., Crous, P.W. &amp; Coutinho, T,A. (1996) <em>Sphaeropsis sapinea</em> and <em>Botryosphaeria dothidea</em> endophytic in <em>Pinus</em> spp. and <em>Eucalyptus</em> spp. in South Africa. <em>South Africa Journal of Botany</em> 62 (2): 86–88. https://doi.org/10.1016/S0254-6299(15)30596-2</p>
<p>Slippers, B., Boissin, E., Phillips, A.J.L., Groenewald, J.Z., Lombard, L., Wingfield, M.J., Postma, A., Burgess, T. &amp; Crous, P.W. (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. <em>Studies in Mycology</em> 76 (1): 31–49. https://doi.org/10.3114/sim0020</p>
<p>Vilgalys, R. &amp; Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several <em>Cryptococcus</em> species. <em>Journal of Bacteriology</em> 172 (8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990</p>
<p>Weber, R.W., Kappe, R., Paululat, T., Mosker, E. &amp; Anke, H. (2007) Anti-<em>Candida</em> metabolites from endophytic fungi. <em>Phytochemistry</em> 68 (6): 886–889. https://doi.org/10.1016/j.phytochem.2006.12.017</p>
<p>White, T.J., Bruns, T., Lee, S., Taylor, J. &amp; Innis, M.A. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. <em>In:</em> Innis, M.A., Gelfand, D.H., Sninsky, J.J. &amp; White, T.J. (Eds.) <em>PCR protocols: a guide to methods and applications.</em> Academic Press, San Diego (CA), pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1</p>
<p>Yang, T., Groenewald, J.Z., Cheewangkoon, R., Jami, F., Abdollahzadeh, J., Lombard, L. &amp; Crous, P.W. (2017) Families, genera, and species of Botryosphaeriales. <em>Fungal Biology</em> 121 (4): 322–346. https://doi.org/10.1016/j.funbio.2016.11.001</p>