Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-13
Page range: 105-117
Abstract views: 226
PDF downloaded: 3

Diplodia parva sp. nov., a novel species of the family Botryosphaeriaceae isolated from soil in Korea

School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea. Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Ministry of Food and Agriculture, Plant Protection and Regulatory Services Directorate, -Ashanti 23321, Ghana
Gabon Ministry of Agriculture, Food and Fishery, Agriculture Direction General, BP 271 Libreville, Gabon
School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea. Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
Botryosphaeriaceae Diplodia phylogeny taxonomy Fungi

Abstract

A fungal strain designated KNU16-007, belonging to the family Botryosphaeriaceae, was isolated from soil in Daegu, Korea. Phylogenetic analyses based on the concatenated nucleotide sequences of the ITS and TEF-1α regions, showed that the isolate resides in a clade together with Diplodia species but occupies a distinct phylogenetic position. Conidial dimensions of strain KNU16-007 (22.7–29.3 μm × 8.9–10.9 μm) or its conidial length:width ratio were significantly differed from those of the closely related D. sapinea, D. intermedia, D. scrobiculata, D. seriata, D. crataegicola, D. rosacearum, and D. citricarpa clearly indicating morphological differences from these species. Detailed descriptions, illustrations, and discussions regarding the morphological and phylogenetic analyses of the closely related species are provided to support the novelty of the isolated species. The results of phylogenetic analysis and morphological observations indicate that strain KNU16-007 represents a novel species in the genus Diplodia, for which the name Diplodia parva sp. nov. is proposed.

References

Ariyawansa, H.A., Hyde, K.D., Jayasiri, S.C., Buyck, B., Chenthana, K.W.T., Dai, D.Q., Dai, Y.C, Daranagama, D.A., Jayawardena, R.S., Lücking, R., Ghobad-Nejhad, M., Niskanen, T., Thambugala, K.M., Voigt,K., Zhao, R.L., LiG, J., Doilom, M., Boonmee, S., Yang, Z.L., Cai, Q., Cui, Y.Y., Bahkali, A.H., Chen, J., Cui, B.K., Chen, J.J., Dayarathne, M.C., Dissanayake, A.J., Ekanayaka, A.H., Hashimoto, A., Hongsanan, S., Jones, E.B.G., Larsson, E., Li, W.J., Li, Q.R., Liu, J.K., Luo, Z.L., Maharachchikumbura, S.S.N., Mapook, A., McKenzie, E.H.C., Norphanphoun, C., Konta, S., Pang, K.L., Perera, R.H., Phookamsak, R., Phukhamsakda, C., Pinruan, U., Randrianjohany, E., Singtripop, C., Tanaka, K., Tian, C.M., Tibpromma, T., Abdel-Wahab, M.A., Wanasinghe, D.N., Wijayawardene, N.N., Zhang, J.F., Zhang, H., Abdel-Aziz, F.A., Wedin, M., Westberg, M., Ammirati, J.F., Bulgakov, T.S., Lima, D.X., Callaghan, T.M., Callac, P., Chang, C.H., Coca, L.F., Dal-Forno, M., Dollhofer, V., Fliegerova, K., Greiner, K., Grif?th, G.W., Ho, H.M., Hofstetter, V., Jeewon, R., Kang, J.C., Wen, T.C., Kirk, P.M., Kytövuori, I., Lawrey, J.D., Xing, J., Li, H., Liu, Z.Y., Liu, X.Z., Liimatainen, K., Lumbsch, T.H., Matsumura, M., Moncada, B., Nuankaew, S., Parnmen, S., Santiago, A.L.C.M.D.A., Sommai, S., Song, Y., deSouza, C.A.F., deSouza-Motta, C.M., Su, H.Y., Suetrong, S., Wang, Y., Wei, S.F., Yuan, H.S., Zhou, L.W., Réblová, M., Fournier, J., Camporesi, E., Luangsa-ard, J.J., Tasanathai, K., Khonsanit, A., Thanakitpipattana, D., Somrithipol, S., Diederich, P., Millanes, A.M., Common, R.S., Stadler, M., Yan, J.Y., Li, X.H., Lee, H.W., Nguyen, T.T.T., Lee, H.B., Battistin, E., Marsico, O., Vizzini, A., Vila, J., Ercole, E., Eberhardt, U., Simonini, G., Wen, H.A., Chen, X.H., Miettinen, O., Spirin, V. & Hernawati, H. (2015) Fungal diversity notes 111–252 – taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 75 (1): 27–274. https://doi.org/10.1007/s13225-015-0346-5

Alves, A., Correia, A. & Phillips, A.J.L. (2006) Multi-gene genealogies and morphological data support Diplodia cupressi sp. nov., previously recognized as D. pinea f. sp. cupressi, as a distinct species. Fungal Diversity 23: 1–15. [http://www.fungaldiversity.org/fdp/sfdp/23-1.pdf]

Bihon, W., Slippers, B., Burgess, T., Wingfield, M.J. & Wingfield, B.D. (2010) Diplodia scrobiculata found in the southern hemisphere. Forest Pathology 41 (3): 175–181. https://doi.org/10.1111/j.1439-0329.2010.00649.x

Carbone, I. & Kohn, L.M. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91 (3): 553–556. https://doi.org/10.1080/00275514.1999.12061051

Coutinho, I.B.L., Cardoso, J.E., Lima, C.S., Lima, J.S., Gonçalves, F.J.T., Silva, A.M.S. & Freire, F.C.O. (2018) An emended description of Neofusicoccum brasiliense and characterization of Neoscytalidium and Pseudofusicoccum species associated with tropical fruit plants in northeastern Brazil. Phytotaxa 358 (3): 251–264. https://doi.org/10.11646/phytotaxa.358.3.3

Crous, P.W., Slippers, B., Wingfield, M.J., Reeder, J., Marasas, W.F.O., Philips, A.J.L., Alves, A., Burgess, T., Barber, P. & Groenewald, J.Z. (2006) Phylogenetic lineages in the Botryosphaeriaceae. Studies in Mycology 55 (5): 235–253. https://doi.org/10.3114/sim.55.1.235

Damm, U., Crous, P.W. & Fourie, P.H. (2007) Botryosphaeriaceae as potential pathogens of Prunus species in South Africa, with descriptions of Diplodia africana and Lasiodiplodia plurivora sp. nov. Mycologia 99 (5): 664–680. https://doi.org/10.1080/15572536.2007.11832531

Das, K., Lee, S.Y. & Jung, H.Y. (2019) Cladophialophora lanosa sp. nov., a new species isolated from soil. Mycobiology 47 (2): 173–179. https://doi.org/10.1080/12298093.2019.1611242

Das, K., Lee, S.Y., Jung, H.Y. (2020) Molecular and morphological characterization of two novel species collected from soil in Korea. Mycobiology 48 (1): 9–19. https://doi.org/10.1080/12298093.2019.1695717

Dissanayake, A.J., Phillips, A.J.L., Li, X.H & Hyde, K.D. (2016) Botryosphaeriaceae: current status of genera and species. Mycosphere 7 (7): 1001–1073. https://doi.org/10.5943/mycosphere/si/1b/13

Doilom, M., Shuttleworth, L.A., Roux, J., Chukeatirote, E. & Kevin, H.D. (2015) Botryosphaeriaceae associated with Tectona grandis (teak) in Northern Thailand. Phytotaxa 233 (1): 001–026. http://dx.doi.org/10.11646/phytotaxa.233.1.1

Evidente, A., Venturi, V., Masi, M., Degrassi, G., Cimmino, A., Maddau, L. & Andolfi, A. (2011) In vitro antibacterial activity of sphaeropsidins and chemical derivatives toward Xanthomonas oryzae pv. oryzae, the causal agent of rice bacterial blight. Journal of Natural Products 74 (12): 2520?2525. https://doi.org/10.1021/np200625m

Evidente, A., Masi, M., Linaldeddu, B.T., Franceschini, A., Scanu, B., Cimmino, A., Andol?, A., Motta, A. & Madda, L. (2012) Afritoxinones A and B, dihydrofuropyran-2-ones produced by Diplodia africana the causal agent of branch dieback on Juniperus phoenicea. Phytochemistry 77 (5): 245–250. https://doi.org/10.1016/j.phytochem.2012.01.011

Farr, D.F. & Rossman, A.Y. (2020) Fungal Databases, U.S. National Fungus Collections, ARS, USDA. Available from: https://nt.ars-grin.gov/fungaldatabases/ (accessed 10 January 2020)

Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Molecular Biology and Evolution 17: 368–376. https://doi.org/10.1007/BF01734359

Fitch, W.M. (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology 20 (4): 406–416. https://doi.org/10.2307/2412116

Giambra, S., Piazza, G., Alves, A., Mondello, V., Berbegal, M., Armengol, J. & Burruano, S. (2016) Botryosphaeriaceae species associated with diseased loquat trees in Italy and description of Diplodia rosacearum sp. nov. Mycosphere 7 (7): 978–989. https://doi.org/10.5943/mycosphere/si/1b/9

Glass, N.L. & Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61 (4): 1323–1330. http://dx.doi.org/10.1128/aem.61.4.1323-1330.1995

Jacobs, K.A. & Rehner, S.A. (1998) Comparison of cultural and morphological characters and its sequences in anamorphs of Botryosphaeria and related taxa. Mycologia 90 (4): 601–610. https://doi.org/10.1080/00275514.1998.12026949

Jami, F., Slippers, B., Wingfield, M.J. & Gryzenhout, M. (2012) Five new species of the Botryosphaeriaceae from Acacia karoo in South Africa. Cryptogamie, Mycologie 33 (3): 245–266. https://doi.org/10.7872/crym.v33.iss3.2012.245

Jayawardena, R.S., Hyde, K.D., McKenzie, E.H.C., Jeewon, R., Phillips, A.J.L., Perera, R.H., de Silva, N.I., Maharachchikumburua, S.S.N., Samarakoon, M.C., Ekanayake, A.H., Tennakoon, D.S., Dissanayake, A.J., Norphanphoun, C., Lin, C., Manawasinghe, I.S., Tian, Q., Brahmanage, R., Chomnunti, P., Hongsanan, S., Jayasiri, S.C., Halleen, F., Bhunjun, C.S., Karunarathna, A. & Wang, Y. (2019) One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75. Fungal Diversity 98: 77–160. https://doi.org/10.1007/s13225-019-00433-6

Kim, G.Y., Jeon, J.S. & Kim, J.K. (2016) Isolation frequency characteristics of Candida species from clinical specimens. Mycobiology 44 (2): 99–104. https://doi.org/10.5941/MYCO.2016.44.2.99

Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Molecular Biology and Evolution 16 (2): 111–120. https://doi.org/10.1007/bf01731581

Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33 (7): 1870–1874. https://doi.org/10.1093/molbev/msw054

Lallemand, B., Masi, M., Maddau, L., De Lorenzi, M., Dam, R., Cimmino, A., Moreno Y Banuls, L., Andolfi, A., Kiss, R., Mathieu, V. & Evidente, A. (2012) Evaluation of in vitro anticancer activity of sphaeropsidins A–C, fungal rearranged pimarane diterpenes, and semisynthetic derivatives. Phytochemistry Letters 5 (4): 770–775. https://doi.org/10.1016/j.phytol.2012.08.011

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23 (21): 2947–2948. https://doi.org/10.1093/bioinformatics/btm404

Lazzizera, C., Frisullo, S., Alves, A., Lopes, J.3 & Phillips, A.J.L. (2008) Phylogeny and morphology of Diplodia species on olives in southern Italy and description of Diplodia olivarum sp. nov. Fungal Diversity 31 (NA): 63–71.

Linaldeddu, B.T., Maddau, L., Franceschini, A., Alves, A. & Phillips, A.J.L. (2016) Botryosphaeriaceae species associated with lentisk dieback in Italy and description of Diplodia insularis sp. nov. Mycosphere 7 (7): 962–977. https://doi.org/10.5943/mycosphere/si/1b/8

Mathieu, V., Chantôme, A., Lefranc, F., Cimmino, A., Miklos, W., Paulitschke, V., Mohr, T., Maddau, L., Kornienko, A., Berger, W., Vandier, C., Evidente, A., Delpire, E. & Kiss, R. (2015) Sphaeropsidin A shows promising activity against drug-resistant cancer cells by targeting regulatory volume increase. Cellular and Molecular Life Sciences 72 (19): 3731–3746. https://doi.org/10.1007/s00018-015-1902-6

Masi, M., Maddau, L., Linaldeddu, B.T., Cimmino, A., D’Amico, W., Scanu, B., Evidente, M., Tuzi, A. & Evidente, A. (2016) Bioactive secondary metabolites produced by the oak pathogen Diplodia corticola. Journal of Agricultural and Food Chemistry 64 (1): 217–225. https://doi.org/10.1021/acs.jafc.5b05170

Masi, M., Nocera, P., Reveglia, P., Cimmino, A. & Evidente, A. (2018) Fungal metabolites antagonists towards plant pests and human pathogens: structure-activity relationship studies. Molecules 23 (4): 834. https://doi.org/10.3390/molecules23040834

O’Donnell, K. & Cigelnik, E. (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7 (1): 103–116. https://doi.org/10.1006/mpev.1996.0376

O’Donnell, K., Kistler, H.C., Cigelnik, E. & Ploetz, R.C. (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America 95 (5): 2044–2049. https://doi.org/10.1073/pnas.95.5.2044

Park, S., Ten, L., Lee, S.Y., Back, C.G., Lee, J.J., Lee, H.B. & Jung, H.Y. (2017) New recorded species in three genera of the Sordariomycetes in Korea. Mycobiology 45 (2): 64–72. https://doi.org/10.5941/MYCO.2017.45.2.64

Phillips, A.J.L., Alves, A., Correia, A. & Luque, J. (2005) Two new species of Botryosphaeria with brown, 1-septate ascospores and Dothiorella anamorphs. Mycologia 97 (2): 513–529. https://doi.org/10.1080/15572536.2006.11832826

Phillips, A.J.L., Lopes, J., Abdollahzadeh, J., Bobev, S. & Alves, A. (2012) Resolving the complex of Diplodia species on apple and other Rosaceae hosts. Persoonia 29: 29–38. https://doi.org/10.3767/003158512X658899

Phillips, A.J.L., Alves, A., Abdollahzadeh, J., Slippers, B., Wingfield, M.J., Groenewald, J.Z. & Crous, P.W. (2013) The Botryosphaeriaceae: genera and species known from culture. Studies in Mycology 76 (1): 51–167. https://doi.org/10.3114/sim0021

Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 (4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Slippers, B. & Wingfield, M.J. (2007) The Botryosphaeriaceae as endophytes and latent pathogens of woody plants: diversity, ecology and impact. Fungal Biology Reviews 21: 90–106. https://doi.org/10.1016/j.fbr.2007.06.002

Slippers, B., Boissin, E., Phillips, A.J.L., Groenewald, J,Z,, Lombard, L., Wingfield, M.J., Postma, A., Burgess, T. & Crous, P.W. (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Studies in Mycology 76 (1): 31–49. https://doi.org/10.3114/sim0020

Smith, H., Wingfield, M.J., Crous, P.W. & Coutinho, T,A. (1996) Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South Africa Journal of Botany 62 (2): 86–88. https://doi.org/10.1016/S0254-6299(15)30596-2

Slippers, B., Boissin, E., Phillips, A.J.L., Groenewald, J.Z., Lombard, L., Wingfield, M.J., Postma, A., Burgess, T. & Crous, P.W. (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Studies in Mycology 76 (1): 31–49. https://doi.org/10.3114/sim0020

Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172 (8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Weber, R.W., Kappe, R., Paululat, T., Mosker, E. & Anke, H. (2007) Anti-Candida metabolites from endophytic fungi. Phytochemistry 68 (6): 886–889. https://doi.org/10.1016/j.phytochem.2006.12.017

White, T.J., Bruns, T., Lee, S., Taylor, J. & Innis, M.A. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications. Academic Press, San Diego (CA), pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yang, T., Groenewald, J.Z., Cheewangkoon, R., Jami, F., Abdollahzadeh, J., Lombard, L. & Crous, P.W. (2017) Families, genera, and species of Botryosphaeriales. Fungal Biology 121 (4): 322–346. https://doi.org/10.1016/j.funbio.2016.11.001

How to Cite

Lee, S.-Y., Ten, L.N., Ayim, B.Y., Fulbert, O.N., Das, K. & Jung, H.-Y. (2021)

Diplodia parva sp. nov., a novel species of the family Botryosphaeriaceae isolated from soil in Korea

. Phytotaxa 514 (2): 105–117. https://doi.org/10.11646/phytotaxa.514.2.2