Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-06
Page range: 203-225
Abstract views: 323
PDF downloaded: 1

Taxonomic and phylogenetic insights into novel Ascomycota from contaminated soils in Yunnan, China

Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guang Dong Province, People’s Republic of China.
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand.
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guang Dong Province, People’s Republic of China; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
1 new species Dothideomycetes Juxtiphoma Lecanicillium Scopulariopsis soil fungi Sordariomycetes Fungi

Abstract

Industrial soil contamination negatively affects flora and fauna in the soil. Nevertheless, some fungi have the ability to survive in such polluted soils. In this study, we isolated fungal strains from polluted soils in industrialized areas of Kunming City, Yunnan Province, China. Fungal strains underwent morphological observations, subjected to phylogenetic analyses and subsequently described using morphological characterizations and multigene phylogenetic inferences. The molecular data of partial nuclear ribosomal DNA (rDNA) (LSU, SSU and ITS) and protein-coding genes (tef1-α, rpb2 and btub) were used to resolve the phylogeny of newly generated sequences. Maximum likelihood and Bayesian inference analyses were constructed to clarify phylogenetic affinities. Based on the biphasic approach of incorporating morphology and molecular data, we introduce one new species, Juxtiphoma yunnanensis sp. nov. (Didymellaceae, Pleosporales), two new records viz. Lecanicillium dimorphum (J.D. Chen) Zare & W. Gams (Cordycipitaceae, Hypocreales) and Scopulariopsis brevicaulis (Sacc.) Bainier (Microascaceae, Microascales) inhabit polluted soils in China.

References

Abbott, S.P. & Sigler, L. (2001) Heterothallism in the Microascaceae demonstrated by three species in the Scopulariopsis brevicaulis series. Mycologia 93: 1211–1220. https://doi.org/10.1080/00275514.2001.12063255

Abbott, S.P., Sigler, L. & Currah, R.S. (1998) Microascus brevicaulis sp. nov., the teleomorph of Scopulariopsis brevicaulis, supports placement of Scopulariopsis with the Microascaceae. Mycologia 90: 297–302. https://doi.org/10.1080/00275514.1998.12026910

Aveskamp, M.M., de Gruyter, J. & Crous, P.W. (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1–18.

Bainier, G. (1907) Mycothèque de l’École de Pharmacie, XIV. Scopulariopsis (Penicillium pro parte) genre nouveau de mucédinées. Bulletin Trimestriel de la Société Mycologique de France 23: 98–105.

Bischoff, J.F. & White, J.F.J. (2004) Torrubiella piperis sp. nov. (Clavicipitaceae, Hypocreales), a new teleomorph of the Lecanicillium complex. Studies in Mycology 50: 89–94.

Boerema, G.H., de Gruyter, J., Noordeloos, M.E. & Hamers, M.E.C. (2004) Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing 1–467. https://doi.org/10.1079/9780851997438.0000

Calvo, P., Nelson, L. & Kloepper, J.W. (2014) Agricultural uses of plant bio stimulants. Plant and Soil 383: 3–41. https://doi.org/10.1007/s11104-014-2131-8

Charlop-Powers, Z., Pregitzer, C.C., Lemetre, C., Ternei, M.A., Maniko, J., Hover, B.M., Calle, P.Y., McGuire, K.L., Garbarino, J., Forgione, H.M., Charlop-Powers, S. & Brady, S.F. (2016) Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proceedings of the National Academy of Sciences113: 14811–14816. https://doi.org/10.1073/pnas.1615581113

Chen, J.D., Liu, J.G., Chen, S.S., Cai, F.J. & Zhang, Z.C. (1985) A new species of Aphanocladium on Agaricus bisporus. Acta Mycologica Sinica 4: 227–233.

Chen, Q., Hou, L.W., Duan, W.J., Crous, P.W. & Cai, L. (2017) Didymellaceae revisited. Studies in Mycology 87: 105–159. https://doi.org/10.1016/j.simyco.2017.06.002

Chen, Q., Jiang, J.R., Zhang, G.Z., Cai, L. & Crous, P.W. (2015) Resolving the Phoma enigma. Studies in Mycology 82: 137–217. https://doi.org/10.1016/j.simyco.2015.10.003.

Chiriví-Salomón, J.S., Danies, G., Restrepo, S. & Sanjuan, T. (2015) Lecanicillium sabanense sp. nov. (Cordycipitaceae) a new fungal entomopathogen of coccids. Phytotaxa 234: 63–74. https://doi.org/10.11646/phytotaxa.234.1.4.

Cuenca-Estrella, M., Gomez-Lopez, A., Mellado, E., Buitrago, M.J., Monzón, A. & Rodriguez-Tudela, J.L. (2003) Scopulariopsis brevicaulis, a fungal pathogen resistant to broad-spectrum antifungal agents. Antimicrobial Agents and Chemotherapy 47: 2339–2341. https://doi.org/10.1128/AAC.47.7.2339-2341.2003

Curzi, M. (1930) Una nuova specie di Microascus. Bolletino della Stazione di Patologia Vegetale di Roma 10: 302–309.

Curzi, M. (1931) Rapporti fra i generi Microascus Zukal e Scopulariopsis Bainier. Bolletino della Stazione di Patologia Vegetale di Roma 11: 55–60.

Dissanayake, A.J., Bhunjun, C.S., Maharachchikumbura, S.S.N. & Liu, J.K. (2020) Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere, 11: 2652–2676. https://doi.org/10.5943/mycosphere/11/1/18

Domsch, K.H., Gams, W. & Anderson, T.H. (1993) Compendium of Soil Fungi. IHWVerlag Press.

Domsch, K.H., Gams, W. & Anderson, T.H. (2007) Compendium of Soil fungi. 2nd edition. IHW, Eching, Germany.

Dorenbosch, M.M. (1970) Key to nine ubiquitous soil-borne phoma-like fungi. Persoonia 6: 1–14.

Fokaides, P.A., Kylili, A., Nicolaou, L. & Ioannou, B. (2016) The effect of soil sealing on the urban heat island phenomenon. Indoor and Built Environment 25: 1136–1147. https://doi.org/10.1177/1420326X16644495

Fr?c, M., Hannula, S.E., Be?ka, M. & Jedryczka, M. (2018) Fungal biodiversity and their role in soil health. Frontiers in Microbiology 9: 707. https://doi.org/10.3389/fmicb.2018.00707

Fr?c, M., Jezierska-Tys, S. & Takashi, Y. (2015) Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health. Advances in Agronomy 132: 161–204. https://doi.org/10.1016/bs.agron.2015.02.003

Gams, W. (1971) Cephalosporium-artige Schimmelpilze (Hyphomycetes). Gustav Fischer Verlag, Stuttgart.

Gams, W. & van Zaayen, A. (1982) Contribution to the taxonomy and pathogenicity of fungicolous Verticillium species. I. Taxonomy. Netherlands Journal of Plant Pathology 88: 57–78. https://doi.org/10.1007/BF01977339

Gams, W. & Zare, R. (2003) A Taxonomic Review of the Clavicipitaceous anamorphs parasitizing nematodes and other microinvertebrates. Clavicipitalean fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural impacts 19: 17–73. https://doi.org/10.1201/9780203912706.pt1

Gill, A.S., Lee, A. & McGuire, K.L. (2017) Phylogenetic and functional diversity of total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure bioswale soils. Applied and Environmental Microbiology 83: e00287–17. https://doi.org/10.1128/AEM.00287-17

Glass, N.L. & Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995

Goettel, M.S., Koike, M., Kim, J.J., Aiuchi, D., Shinya, R. & Brodeur, J. (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Journal of Invertebrate Pathology 98: 256–261. https://doi.org/10.1016/j.jip.2008.01.009

Grishkan, I. (2018) Spatiotemporal variations in soil cultivable mycobiota at the Arava desert (Israel) along latitudinal and elevational gradients. AIMS Microbiology 4: 502. https://doi.org/10.3934/microbiol.2018.3.502

Grum-Grzhimaylo, A.A., Georgieva, M.L., Bondarenko, S.A., Debets, A.J.M. & Bilanenko, E.N. (2016) On the diversity of fungi from soda soils. Fungal Diversity 76: 27–74. https://doi.org/10.1007/s13225-015-0320-2

Guilland, C., Maron, P.A., Damas, O. & Ranjard, L. (2018) Biodiversity of urban soils for sustainable cities. Environmental Chemistry Letters 16: 1267–1282. https://doi.org/10.1007/s10311-018-0751-6

Gupta, S., Wali, A., Gupta, M. & Annepu, S.K. (2017) Fungi: An Effective Tool for Bioremediation. In: Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, pp. 593–606. https://doi.org/10.1007/978-981-10-6593-4_24

Hall, T. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hongsanan, S., Hyde, K.D., Phookamsak, R., Wanasinghe, D.N., McKenzie, E.H.C., Sarma, V.V., Boonmee, S., Lücking, R., Pem, D., Bhat, J.D., Liu, N., Tennakoon, D.S., Karunarathna, A., Jiang, S.H., Jones, E.B.G., Phillips, A.J.L., Manawasinghe, I., Tibpromma, S., Jayasiri, S.C., Sandamali, D., Jayawardena, R.S., Wijayawardene, N.N., Ekanayaka, A.H., Jeewon, R., Lu, Y.Z., Dissanayake, A.J., Zeng, X.Y., Luo, Z.L., Tian, Q., Phukhamsakda, C., Thambugala, K.M., Dai, D.Q., Chethana, T.K.W., Ertz, D., Doilom, M., Liu, J.K., Pérez-Ortega, S., Suija, A., Senwanna, C., Wijesinghe, S.N., Konta, S., Niranjan, M., Zhang, S.N., Ariyawansa, H.A., Jiang, H.B., Zhang, J.F., de Silva, N.I., Thiyagaraja, V., Zhang, H., Bezerra, J.D.P., Miranda-Gonzáles, R., Aptroot, A., Kashiwadani, H., Harishchandra, D., Aluthmuhandiram, J.V.S., Abeywickrama, P.D., Bao, D.F., Devadatha, B., Wu, H.X., Moon, K.H., Gueidan, C., Schumm, F., Bundhun, D., Mapook, A., Monkai, J., Chomnunti, P., Samarakoon, M.C., Suetrong, S., Chaiwan, N., Dayarathne, M.C., Jing, Y., Rathnayaka, A.R., Bhunjun, C.S., Xu, J.C., Zheng, J.S., Liu, G., Feng, Y. & Xie, N. (2020) Refined families of Dothideomycetes: Orders and families incertae sedis in Dothideomycetes. Fungal Diversity105: 17–318. https://doi.org/10.1007/s13225-020-00462-6

Hou, L., Hernández-Restrepo, M., Groenewald, J.Z., Cai, L. & Crous, P.W. (2020) Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). MycoKeys 65: 49–99. https://doi.org/10.3897/mycokeys.65.47704

Huang, S., Maharachchikumbura, S.S.N., Jeewon, R., Bhat, D.J., Phookamsak, R., Hyde, K.D., Al-Sadi, A. & Kang, J. (2018) Lecanicillium subprimulinum (Cordycipitaceae, Hypocreales), a novel species from Baoshan, Yunnan. Phytotaxa 348: 63–74. https://doi.org/10.11646/phytotaxa.348.2.4

Hirwa, H., Nshimiyimana, F.X., Ngendahayo, E., Akimpaye, B., Nahayo, L., Ngamata, O.M. & de Dieu Bazimenyera, J. (2019) Evaluation of Soil Contamination in Mining Areas of Rwanda. American Journal of Water Science and Engineering 5: 9–15. https://doi.org/10.11648/j.ajwse.20190501.12

Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Hu, Y., Dou, X., Li, J. & Li, F. (2018) Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China. Frontiers in microbiology 9: 226. https://doi.org/10.3389/fmicb.2018.00226

Hyde, K.D., de Silva, N.I., Jeewon, R., Bhat, D.J., Phookamsak, R., Doilom, M., Boonmee, S., Jayawardena, R.S., Maharachchikumbura, S.S.N., Senanayake, I.C., Manawasinghe, I.S., Liu, N.G., Abeywickrama, P.D., Chaiwan, N., Karunarathna, A., Pem, D., Lin, C.G., Sysouphanthong, P., Luo, Z.L., Wei, D.P., Wanasinghe, D.N., Norphanphoun, C., Tennakoon, D.S., Samarakoon, M.C., Jayasiri, S.C., Jiang, H.B., Zeng, X.Y., Li, J.F., Wijesinghe, S.N., Devadatha, B., Goonasekara, I.D., Brahmanage, R.S., Yang, E.F., Aluthmuhandiram, J.V.S., Dayarathne, M.C., Marasinghe, D.S., Li, W.J., Dissanayake, L.S., Dong, W., Huanraluek, N., Lumyong, S., Liu, J.K., Karunarathna, S.C., Jones, E.B.G., Al-Sadi, A.M., Xu, J.C., Harishchandra, D. & Sarma, V.V. (2020b) AJOM new records and collections of fungi: 1–100. Asian Journal of Mycology 3: 22–294. https://doi.org/10.5943/ajom/3/1/3

Hyde, K.D., Norphanphoun, C., Maharachchikumbura, S.S.N., Bhat, D.J., Jones, E.B.G., Bundhun, D., Chen, Y.J., Bao, D.F., Boonmee, S., Calabon, M.S., Chaiwan, N., Chethana, K.W.T., Dai, D.Q., Dayarathne, M.C., Devadatha, B., Dissanayake, A.J., Dissanayake, L.S., Doilom, M., Dong, W., Fan, X.L., Goonasekara, I.D., Hongsanan, S., Huang, S.K., Jayawardena, R.S., Jeewon, R., Karunarathna, A., Konta, S., Kumar, V., Lin, C.G., Liu, J.K., Liu, N.G., Luangsa-ard, J., Lumyong, S., Luo, Z.L., Marasinghe, D.S., McKenzie, E.H.C., Niego, A.G.T., Niranjan, M., Perera, R.H., Phukhamsakda, C., Rathnayaka, A.R., Samarakoon, M.C., Samarakoon, S.M.B.C., Sarma, V.V., Senanayake, I.C., Shang, Q.J., Stadler, M., Tibpromma, S., Wanasinghe, D.N., Wei, D.P., Wijayawardene, N.N., Xiao, Y.P., Yang, J., Zeng, X.Y., Zhang, S.N. & Xiang, M.M. (2020a) Refined families of Sordariomycetes. Mycosphere 11: 305–1059. https://doi.org/10.5943/mycosphere/11/1/7

Hyde, K.D., Xu, J.C., Rapior, S., Jeewon, R., Lumyong, S., Niego, A.G.T., Abeywickrama, P.D., Aluthmuhandiram, J.P.S., Brahamanage, R.S., Brooks, S., Chaiyasen, A., Chethana, K.W.T., Chomnunti, P., Chepkirui, K., Chuankid, B., de Silva, N.I., Doilom, M., Faulds, C., Gentekaki, E., Gopalan, V., Kakumyan, P., Harishchandra, D., Hemachandran, H., Hongsanan, S., Karunarathna, A., Karunarathna, S.C., Khan, S., Kumla, J., Jayawardena, R.S., Liu, N., Luangharn, T., Macabeo, A.P.G., Marasinghe, D.S., Meeks, D., Mortimer, P.E., Mueller, P., Nadir, S., Nataraja, K.N., Nontachaiyapoom, S., O’Brien, M., Penkhrue, W., Phukhamsakda, C., Shaanker Ramanan, U., Rathnayaka, A.R., Sadaba, R.S., Sandargo, B., Samarakoon, B.C., Tennakoon, D.S., Siva, R., Sriprom, W., Suryanarayanan, T.S., Sujarit, K., Suwannarach, N., Suwunwong, T., Thongbai, B., Thongklang, N., Wei, D., Wijesinghe, N.S., Winiski, J., Yan, J., Yasanthika, E. & Stadler, M. (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diversity 97: 1–136. https://doi.org/10.1007/s13225-019-00430-9

Index Fungorum. (2021) Available from: https://www.indexfungorum.org/names/names.asp (accessed 9 January 2021)

Issakainen, J., Jalava, J., Hyvönen, J., Sahlberg, N, Pirnes, T & Campbell, C.K. (2003) Relationships of Scopulariopsis based on LSU rDNA sequences. Medical Mycology 41: 31–42. https://doi.org/10.1080/mmy.41.1.31.42

Jagielski, T., Sandoval-Denis, M., Yu, J., Yao, L., Baku?a, Z., Kalita, J., Skóra, M., Krzy?ciak, P., Sybren de Hoog, G., Guarro, J. & Gené, J. (2016) Molecular taxonomy of Scopulariopsis-like fungi with description of new clinical and environmental species. Fungal Biology 120: 586–602. https://doi.org/10.1016/j.funbio.2016.01.014

Jayasiri, S.C., Hyde, K.D., Abd-Elsalam, K.A., Abdel-Wahab, M.A., Ariyawansa, H.A., Bhat, J., Buyck, B., Dai, Y.C., Ertz, D., Hidayat,I., Jeewon, R., Jones, E.B.G., Karunarathna, S.C., Kirk, P., Lei, C., Liu, J.K., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Ghobad Nejhad, M., Nilsson, H., Pang, K.L., Phookamsak, R., Rollins, A.W., Romero, A.I., Stephenson, S., Suetrong, S., Tsui, C.K.M.,Vizzini, A., Wen, T.C., de Silva, N.I., Promputtha, I. & Kang, J.C. (2015) The faces of fungi database: fungal names linked with morphology, molecular and human attributes. Fungal Diversity 74: 18–357. https://doi.org/10.1007/s13225-015-0351-8

Joo, J.H. & Hussein, K.A. (2012) Heavy metal tolerance of fungi isolated from contaminated soil. Korean Journal of Soil Science and Fertilizer 45: 565–571. https://doi.org/10.7745/KJSSF.2012.45.4.565

Kaifuchi, S., Nonaka, K., Mori, M, Shiomi, K, Ômura, S. & Masuma, R. (2013) Lecanicillium primulinum, a new hyphomycete (Cordycipitaceae) from soils in the Okinawa’s main island and the Bonin Islands, Japan. Mycoscience 54: 291–296. https://doi.org/10.1016/j.myc.2012.10.006.

Karaca, O., Cameselle, C. & Reddy, K.R. (2018) Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in Environmental Science and Bio/Technology 17: 205–228. https://doi.org/10.1007/s11157-017-9453-y

Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Kremer, R.J. (2017) Soil Health and Intensification of Agroecosytems. In Biotechnology Impacts on Soil and Environmental Services. (pp. 353–375). Academic Press. https://doi.org/10.1016/B978-0-12-805317-1.00016-6

Li, Q., Liu, J. & Gadd, G.M. (2020) Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Applied Microbiology and Biotechnology 104: 8999–9008. https://doi.org/10.1007/s00253-020-10854-y

Li, T., Liu, Y., Lin, S., Liu, Y. & Xie, Y. (2019) Soil pollution management in China: a brief introduction. Sustainability 11: 556. https://doi.org/10.3390/su11030556

Li, X.L., Ojaghian, M.R., Zhang, J.Z. & Zhu, S.J. (2017) A new species of Scopulariopsis and its synergistic effect on pathogenicity of Verticillium dahliae on cotton plants. Microbiological Research 201: 12–20. https://doi.org/10.1016/j.micres.2017.04.006.

Li, W., Wang, M.M., Wang, X.G., Cheng, X.L., Guo, J.J., Bian, X.M. & Cai, L. (2016) Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Scientific Reports 6: 1–9. https://doi.org/10.1038/srep26528

Liu, Y.J., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Molecular Biology and Evolution 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092

Lu, C., Kotze, D.J. & Setälä, H.M. (2020) Soil sealing causes substantial losses in C and N storage in urban soils under cool climate. Science of the Total Environment 725: 138369. https://doi.org/10.1016/j.scitotenv.2020.138369

Mao, J. & Guan, W. (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agriculturae Scandinavica, Section B–Soil and Plant Science 66: 399–405. https://doi.org/10.1080/09064710.2015.1137629

Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop 2010 (GCE), New Orleans, LA pp: 1–8 https://doi.org/10.1109/GCE.2010.5676129

Morel, J.L., Chenu, C. & Lorenz, K. (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). Journal of Soils and Sediments 15: 1659–1666. https://doi.org/10.1007/s11368-014-0926-0

Murata, T. & Kawai, N. (2018) Degradation of the urban ecosystem function due to soil sealing: involvement in the heat island phenomenon and hydrologic cycle in the Tokyo metropolitan area. Soil Science and Plant Nutrition 64: 145–155. https://doi.org/10.1080/00380768.2018.1439342

Nagano, Y., Miura, T., Nishi, S., Lima, A.O., Nakayama, C., Pellizari, V.H & Fujikura, K. (2017) Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. Deep Sea Research Part II: Topical Studies in Oceanography 146: 59–67. https://doi.org/10.1016/j.dsr2.2017.05.012

Newbound, M., Mccarthy, M.A. & Lebel, T. (2010) Fungi and the urban environment: A review. Landscape and Urban Planning 96: 138–145. https://doi.org/10.1016/j.landurbplan.2010.04.005

Pataki, D.E., Carreiro, M.M., Cherrier, J., Grulke, N.E., Jennings, V., Pincetl, S., Pouyat, R.V., Whitlow, T.H. & Zipperer, W.C. (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment 9: 27–36. https://doi.org/10.1890/090220

Poyntner, C., Prem, M., Mann, O., Blasi, B. & Sterflinger, K. (2018) Selective screening: isolation of fungal strains from contaminated soils in Austria. Die Bodenkultur: Journal of Land Management, Food and Environment 68: 157–169. https://doi.org/10.1515/boku-2017-0014

Qayyum, S., Khan, I., Maqbool, F., Zhao, Y., Gu, Q. & Peng, C. (2016) Isolation and characterization of heavy metal resistant fungal isolates from Industrial soil, China. Pakistan journal of Zoology 48.

Rashmi, M., Kushveer, J.S. & Sarma, V.V. (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10: 798–1079. https://doi.org/10.1515/mgmc-2018-0038

Rambaut, A. (2010) FigTree. Tree figure drawing tool version 1.3.1, Institute of Evolutionary Biology, University of Edinburgh. Available from: https://tree.bio.ed.ac.uk/software/figtree/ (accessed 8 December 2020)

Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304–311. https://doi.org/10.1007/BF02338839

Reese, A.T., Savage, A., Youngsteadt, E., McGuire, K.L., Koling, A., Watkins, O., Frank, S.D. & Dunn, R.R. (2016) Urban stress is associated with variation in microbial species composition–but not richness–in Manhattan. International Society for Microbial Ecology Journal 10: 751–760. https://doi.org/10.1038/ismej.2015.152

Rehner, S.A. & Buckley, E. (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. https://doi.org/10.1080/15572536.2006.11832842

Renella, G. (2020) Evolution of physico-chemical properties, microbial biomass and microbial activity of an urban soil after de-sealing. Agriculture 10: 596. https://doi.org/10.3390/agriculture10120596

Rhodes, C.J. (2014) Mycoremediation (bioremediation with fungi)–growing mushrooms to clean the earth. Chemical Speciation & Bioavailability 26: 196–198. https://doi.org/10.3184/095422914X14047407349335

Rohilla, S. & Salar, R. (2012) Isolation and Characterization of Various Fungal Strains from Agricultural Soil Contaminated with Pesticides. Research Journal of Recent Sciences 1: 297–303.

Rosas-Medina, M., Maciá-Vicente, J.G. & Piepenbring, M. (2020) Diversity of fungi in soils with different degrees of degradation in Germany and Panama. Mycobiology 48: 20–28. https://doi.org/10.1080/12298093.2019.1700658

Ruisi, S., Barreca, D, Selbmann, L., Zucconi, L. & Onofri, S. (2007) Fungi in Antarctica. Reviews in Environmental Science and Bio/Technology 6: 127–141. https://doi.org/10.1007/s11157-006-9107-y

Saccardo, P.A. (1881) Fungi Italici Autographice Delineati (additis nonnullis extra-Italicis, asterisco notatis). Fascs 17–28. Tabs 641–1120. Italy, Patavii.

Saccardo, P.A. (1879) Fungi Gallici lecti a cl. viris P. Brunaud, C.C. Gillet et Abb. Letendre. Michelia 1: 500–538.

Sabuda, M.C., Rosenfeld, C.E., DeJournett, T.D., Schroeder, K. Wuolo-Journey, K. & Santelli, C.M. (2020) Fungal bioremediation of selenium-contaminated industrial and municipal wastewaters. Frontiers in Microbiology 11: 2105. https://doi.org/10.3389/fmicb.2020.02105

Sandoval-Denis, M., Guarro, J., Cano-Lira, J.F., Sutton, D.A., Wiederhold, N.P., de Hoog, G.S., Abbott, S.P., Decock, C., Sigler, L. & Gené, J. (2016) Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Studies in Mycology 1: 193 –233. https://doi.org/10.1016/j.simyco.2016.07.002

Sandoval-Denis, M., Sutton, D.A., Fothergill, A.W., Cano-Lira, J., Gené, J., Decock, C.A., de Hoog, G.S., Guarro, J. (2013) Scopulariopsis, a poorly known opportunistic fungus: spectrum of species in clinical samples and in vitro responses to antifungal drugs. Journal of Clinical Microbiology 51: 3937–3943. https://doi.org/10.1128/JCM.01927-13

Senanayake, I.C., Rathnayaka, A.R., Marasinghe, D.S., Calabon, M.S., Gentekaki, E., Wanasinghe, D.N., Lee, H.B., Hurdeal, V.G., Pem, D., Dissanayake, L.S., Wijesinghe, S.N., Bundhun, D., Nguyen, T.T., Goonasekara, I.D., Abeywickrama, P.D., Bhunjun, C.S., Chomnunti, P., Boonmee, S., Jayawardena, R.S., Wijayawardene, N.N., Doilom, M., Jeewon, R., Bhat, J.D., Zhang, H.X. & Xie, N. (2020) Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20

Schloter, M., Nannipieri, P., Sørensen, S.J. & van Elsas, J.D. (2018) Microbial indicators for soil quality. Biology and Fertility of Soils 54: 1–10. https://doi.org/10.1007/s00374-017-1248-3

Species Fungorum. (2021) Available from: https://www.speciesfungorum.org/Names/Names.asp (accessed 12 January 2021)

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Stevenson, P.C., Bidartondo, M.I., Blackhall-Miles, R., Cavagnaro, T.R., Cooper, A., Geslin, B., Koch, H., Lee, M.A., Moat, J., O’Hanlon, R., Sjöman, H., Sofo, A., Stara, K. & Suz, L.M. (2020) The state of the world’s urban ecosystems: What can we learn from trees, fungi, and bees?.Plants, People, Planet 2: 482–498. https://doi.org/10.1002/ppp3.10143

Sung, G.H., Hywel-Jones, N.L., Sung, J.M. & Luangsa-ard, J.J., Shrestha, B. & Spatafora, J.W. (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57: 5–59. https://doi.org/10.3114/sim.2007.57.01

Sung, G.H., Spatafora, J.W., Zare, R. & Hodge, K.T. (2001) A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia 72: 311–328. https://doi.org/10.1127/nova.hedwigia/72/2001/311

Su, L., Zhu, H., Guo, Y., Du, X., Guo, J., Zhang, L. & Qin, C. (2019) Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Phytotaxa 387: 55–62. https://doi.org/10.11646/phytotaxa.387.1.4

Sukarno, N., Kurihara, Y., Ilyas, M., Mangunwardoyo, W., Yuniarti, E., Sjamsuridzal, W., Park, J.Y., Saraswati, R., Inaba, S., Widyastuti, Y., Ando, K. & Harayama, S. (2009) Lecanicillium and Verticillium species from Indonesia and Japan including three new species. Mycoscience 50: 369–379. https://doi.org/10.1007/S10267-009-0493-1

Sun, J.Z., Liu, X.Z., McKenzie, E.H.C., Jeewon, R., Liu, J.K., Zhang, X.L., Zhao, Q. & Hyde, K.D. (2019) Fungicolous fungi: terminology, diversity, distribution, evolution, and species checklist. Fungal Diversity 95: 337–430. https://doi.org/10.1007/s13225-019-00422-9

Valenzuela-Lopez, N., Cano-Lira, J.F., Guarro, J., Sutton, D.A., Wiederhold, N., Crous, P.W. & Stchigel, A.M. (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Studies in Mycology 90: 1–69. https://doi.org/10.1016/j.simyco.2017.11.003

van Agtmaal, M., Straathof, A., Termorshuizen, A., Teurlincx, S., Hundscheid, M., Ruyters, S., Busschaert, P., Lievens, B. & de Boer, W. (2017) Exploring the reservoir of potential fungal plant pathogens in agricultural soil. Applied Soil Ecology 121: 152–160. https://doi.org/10.1016/j.apsoil.2017.09.032

Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

Wanasinghe, D.N., Jeewon, R., Peršoh, D., Jones, E.B.G., Camporesi, E., Bulgakov, T.S., Gafforov, Y.S. & Hyde, K.D. (2018) Taxonomic circumscription and phylogenetics of novel didymellaceous taxa with brown muriform spores. Studies in Fungi 3: 152–175 https://doi.org/10.5943/sif/3/1/17

Wanasinghe, D.N., Mortimer, P.E. & Xu, J. (2021) Insight into the systematics of microfungi colonizing dead woody twigs of Dodonaea viscosa in Honghe (China). Journal of Fungi 7: 180. https://doi.org/10.3390/jof7030180

Wanasinghe, D.N., Wijayawardene, N.N., Xu, J., Cheewangkoon, R. & Mortimer, P.E. (2020) Taxonomic novelties in Magnolia-associated pleosporalean fungi in the Kunming Botanical Gardens (Yunnan, China). Plos One 15: e0235855. https://doi.org/10.1371/journal.pone.0235855

White, T.J., Bruns, T.D., Lee, S.B. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Gelfand, M.A., Sninsky, D.H., Innis, J.J. & White, T.J. (Eds.) PCR protocols: a guide to methods and applications. Academic, London, pp. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wijayawardene, N.N., Hyde, K.D., Rajeshkumar, K.C., Hawksworth, D.L., Madrid, H., Kirk, P.M., Braun, U., Singh, R.V., Crous, P.W., Kukwa, M., Lücking, R., Kurtzman, C.P., Yurkov, A., Haelewaters, D., Aptroot, A., Lumbsch, H.T., Timdal, E., Ertz, D., Etayo, J., Phillips, A.J.L., Johannes, Z., Groenewald, J.Z., Papizadeh, M., Selbmann, L., Dayarathne, M.C., Weerakoon, G., Jones, E.B.G., Suetrong, S., Tian, Q., Castañeda-Ruiz, R.F, Bahkali, A.H., Pang, K.L., Tanaka, K., Dai, D.Q., Sakayaroj, J., Hujslová, M., Lombard, L., Shenoy, B.D., Suija, A., Maharachchikumbura, S.S.N., Thambugala, K.M., Wanasinghe, D.N., Sharma, B.O., Gaikwad, S., Pandit, G., Zucconi, L., Onofri, S., Egidi, E., Huzefa, A., Raja, H.A., Kodsueb, R., Cáceres, M.E.S., Pérez-Ortega, S., Fiuza, P.O., Monteiro, J.S., Vasilyeva, L.N., Shivas, R.G., Prieto, M., Wedin, M., Olariaga, I., Lateef, A.A., Agrawal, Y., Fazeli, S.A.S., Amoozegar, M.A., Zhao, G.Z., Pfliegler, W.P., Sharma, G., Oset, M., Abdel-Wahab, M.A., Takamatsu, S., Bensch, K., de Silva1, N.I., De Kesel, A., Karunarathna, A., Boonmee, S., Pfister, D.H., Lu, Y.Z., Luo, Z.L., Boonyuen, N., Daranagama, D.A., Senanayake, I.C., Jayasiri, S.C., Samarakoon, M.C., Zeng, X.Y., Doilom, M., Quijada, L., Rampadarath, S., Heredia, G., Dissanayake, A.J., Jayawardana, R.S., Perera, R.H., Tang, L.Z., Phukhamsakda, C., Hernández-Restrepo, M., Ma, X., Tibpromma, S., Gusmao, L.F.P., Weerahewa, D. & Karunarathna, S.C. (2017) Notes for genera: Ascomycota. Fungal Diversity 86: 1–594. https://doi.org/10.1007/s13225-017-0386-0

Woudenberg, J.H.C., Aveskamp, M.M., de Gruyter, J., Spiers, A.G. & Crous, P.W. (2009) Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype. Persoonia 22: 56–62. https://doi.org/10.3767/003158509X427808

Yasanthika, W.A.E., Wanasinghe, D.N., Karunarathna, S.C., Bhat, D.J., Samarakoon, S.M.B.C., Ren, G.C., Monkai, J., Mortimer, P.E. & Hyde, K.D. (2020) Two new Sordariomycetes records from forest soils in Thailand. Asian Journal of Mycology 3: 456–472. https://doi.org/10.5943/ajom/3/1/16

Ye, F., Gong, D., Pang, C., Luo, J., Zeng, X. & Shang, C. (2020) Analysis of fungal composition in mine-contaminated soils in Hechi city. Current Microbiology 77: 2685–2693. https://doi.org/10.1007/s00284-020-02044-w

Yang, Y., Mei, Y., Zhang, C., Zhang, R., Liao, X. & Liu, Y. (2016) Heavy metal contamination in surface soils of the industrial district of Wuhan, China. Human and Ecological Risk Assessment: An International Journal 22: 126–140. https://doi.org/10.1080/10807039.2015.1056291

Zare, R. & Gams, W. (2008) A revision of Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycological Research 112: 811–824. https://doi.org/10.1016/j.mycres.2008.01.019

Zare, R., Gams, W. & Culham, A. (2000) A revision of Verticillium section Prostrata. I. Phylogenetic studies using ITS sequences. Nova Hedwigia 71: 465–480. https://doi.org/10.1127/nova/71/2000/465

Zare, R. & Gams, W. (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73: 1–50. https://dx.doi.org/10.1127/nova.hedwigia/73/2001/1

Zhang, T., Jia, R.L. & Yu, L.Y. (2016a) Diversity and distribution of soil fungal communities associated with biological soil crusts in the southeastern Tengger Desert (China) as revealed by 454 pyrosequencing. Fungal Ecology 23: 156–163. https://doi.org/10.1016/j.funeco.2016.08.004

Zhang, X.Y., Wang, G.H., Xu, X.Y., Nong, X.H., Wang, J., Amin, M. & Qi, S.H. (2016b) Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing. Deep Sea Research Part I: Oceanographic Research Papers 116: 99–105. https://doi.org/10.1016/j.dsr.2016.08.004

Zhang, Z.F., Liu, F., Zhou, X., Liu, X.Z., Liu, S.J. & Cai, L. (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39: 1–31 https://doi.org/10.3767/persoonia.2017.39.01

Zhaxybayeva, O. & Gogarten, J.P. (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. Genomics 3: 1–15. https://doi.org/10.1186/1471-2164-3-4

Zhen, Z., Wang, S., Luo, S., Ren, L., Liang, Y., Yang, R., Li, Y., Zhang, Y., Deng, S., Zou, L., Lin, Z. & Zhang, D. (2019) Significant impacts of both total amount and availability of heavy metals on the functions and assembly of soil microbial communities in different land use patterns. Frontiers in Microbiology 10: p2293. https://doi.org/10.3389/fmicb.2019.02293

How to Cite

Yasanthika, E., Wanasinghe, D.N., Ren, G.-C., Karunarathna, S.C., Tennakoon, D.S., Monkai, J., Gui, H., Mortimer, P.E., Lumyong, S. & Hyde, K.D. (2021)

Taxonomic and phylogenetic insights into novel Ascomycota from contaminated soils in Yunnan, China

. Phytotaxa 513 (3): 203–225. https://doi.org/10.11646/phytotaxa.513.3.2