Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-08-06
Page range: 203-225
Abstract views: 52
PDF downloaded: 1

Taxonomic and phylogenetic insights into novel Ascomycota from contaminated soils in Yunnan, China

Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guang Dong Province, People’s Republic of China.
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Center for Mountain Futures, Kunming Institute of Botany, Honghe County 654400, Yunnan, People’s Republic of China
Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand.
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand; Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guang Dong Province, People’s Republic of China; Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
1 new species Dothideomycetes Juxtiphoma Lecanicillium Scopulariopsis soil fungi Sordariomycetes Fungi

Abstract

Industrial soil contamination negatively affects flora and fauna in the soil. Nevertheless, some fungi have the ability to survive in such polluted soils. In this study, we isolated fungal strains from polluted soils in industrialized areas of Kunming City, Yunnan Province, China. Fungal strains underwent morphological observations, subjected to phylogenetic analyses and subsequently described using morphological characterizations and multigene phylogenetic inferences. The molecular data of partial nuclear ribosomal DNA (rDNA) (LSU, SSU and ITS) and protein-coding genes (tef1-α, rpb2 and btub) were used to resolve the phylogeny of newly generated sequences. Maximum likelihood and Bayesian inference analyses were constructed to clarify phylogenetic affinities. Based on the biphasic approach of incorporating morphology and molecular data, we introduce one new species, Juxtiphoma yunnanensis sp. nov. (Didymellaceae, Pleosporales), two new records viz. Lecanicillium dimorphum (J.D. Chen) Zare & W. Gams (Cordycipitaceae, Hypocreales) and Scopulariopsis brevicaulis (Sacc.) Bainier (Microascaceae, Microascales) inhabit polluted soils in China.

References

<p>Abbott, S.P. &amp; Sigler, L. (2001) Heterothallism in the Microascaceae demonstrated by three species in the <em>Scopulariopsis brevicaulis</em> series. <em>Mycologia</em> 93: 1211–1220. https://doi.org/10.1080/00275514.2001.12063255</p>
<p>Abbott, S.P., Sigler, L. &amp; Currah, R.S. (1998) <em>Microascus brevicaulis</em> <em>sp. nov.</em>, the teleomorph of <em>Scopulariopsis brevicaulis</em>, supports placement of <em>Scopulariopsis</em> with the Microascaceae. <em>Mycologia</em> 90: 297–302. https://doi.org/10.1080/00275514.1998.12026910</p>
<p>Aveskamp, M.M., de Gruyter, J. &amp; Crous, P.W. (2008) Biology and recent developments in the systematics of <em>Phoma</em>, a complex genus of major quarantine significance. <em>Fungal Diversity</em> 31: 1–18.</p>
<p>Bainier, G. (1907) Mycothèque de l’École de Pharmacie, XIV. <em>Scopulariopsi</em>s (<em>Penicillium </em>pro parte) genre nouveau de mucédinées. <em>Bulletin Trimestriel de la Société Mycologique de France</em> 23: 98–105.</p>
<p>Bischoff, J.F. &amp; White, J.F.J. (2004) <em>Torrubiella piperis</em> <em>sp. nov.</em> (Clavicipitaceae, Hypocreales), a new teleomorph of the <em>Lecanicillium</em> complex. <em>Studies in Mycology</em> 50: 89–94.</p>
<p>Boerema, G.H., de Gruyter, J., Noordeloos, M.E. &amp; Hamers, M.E.C. (2004) <em>Phoma</em> identification manual. Differentiation of specific and infra-specific taxa in culture. <em>CABI Publishing</em> 1–467.&nbsp; https://doi.org/10.1079/9780851997438.0000</p>
<p>Calvo, P., Nelson, L. &amp; Kloepper, J.W. (2014) Agricultural uses of plant bio stimulants. <em>Plant and Soil</em> 383: 3–41. https://doi.org/10.1007/s11104-014-2131-8</p>
<p>Charlop-Powers, Z., Pregitzer, C.C., Lemetre, C., Ternei, M.A., Maniko, J., Hover, B.M., Calle, P.Y., McGuire, K.L., Garbarino, J., Forgione, H.M., Charlop-Powers, S. &amp; Brady, S.F. (2016) Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. <em>Proceedings of the National Academy of Sciences</em>113: 14811–14816. https://doi.org/10.1073/pnas.1615581113</p>
<p>Chen, J.D., Liu, J.G., Chen, S.S., Cai, F.J. &amp; Zhang, Z.C. (1985) A new species of <em>Aphanocladium</em> on <em>Agaricus bisporus</em>. <em>Acta Mycologica Sinica</em> 4: 227–233.</p>
<p>Chen, Q., Hou, L.W., Duan, W.J., Crous, P.W. &amp; Cai, L. (2017) Didymellaceae revisited. <em>Studies in Mycology</em> 87: 105–159. https://doi.org/10.1016/j.simyco.2017.06.002</p>
<p>Chen, Q., Jiang, J.R., Zhang, G.Z., Cai, L. &amp; Crous, P.W. (2015) Resolving the <em>Phoma enigma</em>. <em>Studies in Mycology</em> 82: 137–217. https://doi.org/10.1016/j.simyco.2015.10.003.</p>
<p>Chiriví-Salomón, J.S., Danies, G., Restrepo, S. &amp; Sanjuan, T. (2015) <em>Lecanicillium sabanense</em> <em>sp. nov.</em> (Cordycipitaceae) a new fungal entomopathogen of coccids. <em>Phytotaxa</em> 234: 63–74. https://doi.org/10.11646/phytotaxa.234.1.4.</p>
<p>Cuenca-Estrella, M., Gomez-Lopez, A., Mellado, E., Buitrago, M.J., Monzón, A. &amp; Rodriguez-Tudela, J.L. (2003) <em>Scopulariopsis brevicaulis</em>, a fungal pathogen resistant to broad-spectrum antifungal agents. <em>Antimicrobial Agents and Chemotherapy</em> 47: 2339–2341. https://doi.org/10.1128/AAC.47.7.2339-2341.2003</p>
<p>Curzi, M. (1930) Una nuova specie di Microascus. <em>Bolletino della Stazione di Patologia Vegetale di Roma</em> 10: 302–309.</p>
<p>Curzi, M. (1931) Rapporti fra i generi Microascus Zukal e <em>Scopulariopsis </em>Bainier. <em>Bolletino della Stazione di Patologia Vegetale di Roma</em> 11: 55–60.</p>
<p>Dissanayake, A.J., Bhunjun, C.S., Maharachchikumbura, S.S.N. &amp; Liu, J.K. (2020) Applied aspects of methods to infer phylogenetic relationships amongst fungi. <em>Mycosphere</em>, 11: 2652–2676. https://doi.org/10.5943/mycosphere/11/1/18</p>
<p>Domsch, K.H., Gams, W. &amp; Anderson, T.H. (1993) <em>Compendium of Soil Fungi</em>. IHWVerlag Press.</p>
<p>Domsch, K.H., Gams, W. &amp; Anderson, T.H. (2007) <em>Compendium of Soil fungi.</em> 2nd edition. IHW, Eching, Germany.</p>
<p>Dorenbosch, M.M. (1970) Key to nine ubiquitous soil-borne phoma-like fungi. <em>Persooni</em>a 6: 1–14.</p>
<p>Fokaides, P.A., Kylili, A., Nicolaou, L. &amp; Ioannou, B. (2016) The effect of soil sealing on the urban heat island phenomenon. <em>Indoor and Built Environment </em>25: 1136–1147. https://doi.org/10.1177/1420326X16644495</p>
<p>Frąc, M., Hannula, S.E., Bełka, M. &amp; Jedryczka, M. (2018) Fungal biodiversity and their role in soil health. <em>Frontiers in Microbiology</em> 9: 707. https://doi.org/10.3389/fmicb.2018.00707</p>
<p>Frąc, M., Jezierska-Tys, S. &amp; Takashi, Y. (2015) Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health<em>. Advances in Agronomy</em> 132: 161–204. https://doi.org/10.1016/bs.agron.2015.02.003</p>
<p>Gams, W. (1971) <em>Cephalosporium-artige Schimmelpilze (Hyphomycetes</em>). Gustav Fischer Verlag, Stuttgart.</p>
<p>Gams, W. &amp; van Zaayen, A. (1982) Contribution to the taxonomy and pathogenicity of fungicolous <em>Verticillium</em> species. I. Taxonomy. <em>Netherlands Journal of Plant Pathology</em> 88: 57–78. https://doi.org/10.1007/BF01977339</p>
<p>Gams, W. &amp; Zare, R. (2003) A Taxonomic Review of the Clavicipitaceous anamorphs parasitizing nematodes and other microinvertebrates. <em>Clavicipitalean fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural impacts</em> 19: 17–73. https://doi.org/10.1201/9780203912706.pt1</p>
<p>Gill, A.S., Lee, A. &amp; McGuire, K.L. (2017) Phylogenetic and functional diversity of total (DNA) and expressed (RNA) bacterial communities in urban green infrastructure bioswale soils. <em>Applied and Environmental Microbiology</em> 83: e00287–17. https://doi.org/10.1128/AEM.00287-17</p>
<p>Glass, N.L. &amp; Donaldson, G.C. (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. <em>Applied and Environmental Microbiology</em> 61: 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995</p>
<p>Goettel, M.S., Koike, M., Kim, J.J., Aiuchi, D., Shinya, R. &amp; Brodeur, J. (2008) Potential of <em>Lecanicillium</em> spp. for management of insects, nematodes and plant diseases. <em>Journal of Invertebrate Pathology</em> 98: 256–261. https://doi.org/10.1016/j.jip.2008.01.009</p>
<p>Grishkan, I. (2018) Spatiotemporal variations in soil cultivable mycobiota at the Arava desert (Israel) along latitudinal and elevational gradients. <em>AIMS Microbiology</em> 4: 502. https://doi.org/10.3934/microbiol.2018.3.502</p>
<p>Grum-Grzhimaylo, A.A., Georgieva, M.L., Bondarenko, S.A., Debets, A.J.M. &amp; Bilanenko, E.N. (2016) On the diversity of fungi from soda soils. <em>Fungal Diversity</em> 76: 27–74. https://doi.org/10.1007/s13225-015-0320-2</p>
<p>Guilland, C., Maron, P.A., Damas, O. &amp; Ranjard, L. (2018) Biodiversity of urban soils for sustainable cities. <em>Environmental Chemistry Letters </em>16: 1267–1282. https://doi.org/10.1007/s10311-018-0751-6</p>
<p>Gupta, S., Wali, A., Gupta, M. &amp; Annepu, S.K. (2017) Fungi: An Effective Tool for Bioremediation. <em>In:</em> <em>Plant-Microbe Interactions in Agro-Ecological Perspectives</em>. Springer, Singapore, pp. 593–606. https://doi.org/10.1007/978-981-10-6593-4_24</p>
<p>Hall, T. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <em>Nucleic Acids Symposium Series</em> 41: 95–98.</p>
<p>Hongsanan, S., Hyde, K.D., Phookamsak, R., Wanasinghe, D.N., McKenzie, E.H.C., Sarma, V.V., Boonmee, S., Lücking, R., Pem, D., Bhat, J.D., Liu, N., Tennakoon, D.S., Karunarathna, A., Jiang, S.H., Jones, E.B.G., Phillips, A.J.L., Manawasinghe, I., Tibpromma, S., Jayasiri, S.C., Sandamali, D., Jayawardena, R.S., Wijayawardene, N.N., Ekanayaka, A.H., Jeewon, R., Lu, Y.Z., Dissanayake, A.J., Zeng, X.Y., Luo, Z.L., Tian, Q., Phukhamsakda, C., Thambugala, K.M., Dai, D.Q., Chethana, T.K.W., Ertz, D., Doilom, M., Liu, J.K., Pérez-Ortega, S., Suija, A., Senwanna, C., Wijesinghe, S.N., Konta, S., Niranjan, M., Zhang, S.N., Ariyawansa, H.A., Jiang, H.B., Zhang, J.F., de Silva, N.I., Thiyagaraja, V., Zhang, H., Bezerra, J.D.P., Miranda-Gonzáles, R., Aptroot, A., Kashiwadani, H., Harishchandra, D., Aluthmuhandiram, J.V.S., Abeywickrama, P.D., Bao, D.F., Devadatha, B., Wu, H.X., Moon, K.H., Gueidan, C., Schumm, F., Bundhun, D., Mapook, A., Monkai, J., Chomnunti, P., Samarakoon, M.C., Suetrong, S., Chaiwan, N., Dayarathne, M.C., Jing, Y., Rathnayaka, A.R., Bhunjun, C.S., Xu, J.C., Zheng, J.S., Liu, G., Feng, Y. &amp; Xie, N. (2020) Refined families of Dothideomycetes: Orders and families incertae sedis in Dothideomycetes. <em>Fungal Diversity</em>105: 17–318. https://doi.org/10.1007/s13225-020-00462-6</p>
<p>Hou, L., Hernández-Restrepo, M., Groenewald, J.Z., Cai, L. &amp; Crous, P.W. (2020) Citizen science project reveals high diversity in Didymellaceae (Pleosporales, Dothideomycetes). <em>MycoKeys</em> 65: 49–99.&nbsp; https://doi.org/10.3897/mycokeys.65.47704</p>
<p>Huang, S., Maharachchikumbura, S.S.N., Jeewon, R., Bhat, D.J., Phookamsak, R., Hyde, K.D., Al-Sadi, A. &amp; Kang, J. (2018) <em>Lecanicillium subprimulinum</em> (Cordycipitaceae, Hypocreales), a novel species from Baoshan, Yunnan. <em>Phytotaxa</em> 348: 63–74. https://doi.org/10.11646/phytotaxa.348.2.4</p>
<p>Hirwa, H., Nshimiyimana, F.X., Ngendahayo, E., Akimpaye, B., Nahayo, L., Ngamata, O.M. &amp; de Dieu Bazimenyera, J. (2019) Evaluation of Soil Contamination in Mining Areas of Rwanda. <em>American Journal of Water Science and Engineering</em> 5: 9–15. https://doi.org/10.11648/j.ajwse.20190501.12</p>
<p>Huelsenbeck, J.P. &amp; Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. <em>Bioinformatics</em> 17: 754–755.&nbsp; https://doi.org/10.1093/bioinformatics/17.8.754</p>
<p>Hu, Y., Dou, X., Li, J. &amp; Li, F. (2018) Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China. <em>Frontiers in microbiology</em> 9: 226. https://doi.org/10.3389/fmicb.2018.00226</p>
<p>Hyde, K.D., de Silva, N.I., Jeewon, R., Bhat, D.J., Phookamsak, R., Doilom, M., Boonmee, S., Jayawardena, R.S., Maharachchikumbura, S.S.N., Senanayake, I.C., Manawasinghe, I.S., Liu, N.G., Abeywickrama, P.D., Chaiwan, N., Karunarathna, A., Pem, D., Lin, C.G., Sysouphanthong, P., Luo, Z.L., Wei, D.P., Wanasinghe, D.N., Norphanphoun, C., Tennakoon, D.S., Samarakoon, M.C., Jayasiri, S.C., Jiang, H.B., Zeng, X.Y., Li, J.F., Wijesinghe, S.N., Devadatha, B., Goonasekara, I.D., Brahmanage, R.S., Yang, E.F., Aluthmuhandiram, J.V.S., Dayarathne, M.C., Marasinghe, D.S., Li, W.J., Dissanayake, L.S., Dong, W., Huanraluek, N., Lumyong, S., Liu, J.K., Karunarathna, S.C., Jones, E.B.G., Al-Sadi, A.M., Xu, J.C., Harishchandra, D. &amp; Sarma, V.V. (2020b) AJOM new records and collections of fungi: 1–100. <em>Asian Journal of Mycology</em> 3: 22–294. https://doi.org/10.5943/ajom/3/1/3</p>
<p>Hyde, K.D., Norphanphoun, C., Maharachchikumbura, S.S.N., Bhat, D.J., Jones, E.B.G., Bundhun, D., Chen, Y.J., Bao, D.F., Boonmee, S., Calabon, M.S., Chaiwan, N., Chethana, K.W.T., Dai, D.Q., Dayarathne, M.C., Devadatha, B., Dissanayake, A.J., Dissanayake, L.S., Doilom, M., Dong, W., Fan, X.L., Goonasekara, I.D., Hongsanan, S., Huang, S.K., Jayawardena, R.S., Jeewon, R., Karunarathna, A., Konta, S., Kumar, V., Lin, C.G., Liu, J.K., Liu, N.G., Luangsa-ard, J., Lumyong, S., Luo, Z.L., Marasinghe, D.S., McKenzie, E.H.C., Niego, A.G.T., Niranjan, M., Perera, R.H., Phukhamsakda, C., Rathnayaka, A.R., Samarakoon, M.C., Samarakoon, S.M.B.C., Sarma, V.V., Senanayake, I.C., Shang, Q.J., Stadler, M., Tibpromma, S., Wanasinghe, D.N., Wei, D.P., Wijayawardene, N.N., Xiao, Y.P., Yang, J., Zeng, X.Y., Zhang, S.N. &amp; Xiang, M.M. (2020a) Refined families of Sordariomycetes. <em>Mycosphere</em> 11: 305–1059. https://doi.org/10.5943/mycosphere/11/1/7</p>
<p>Hyde, K.D., Xu, J.C., Rapior, S., Jeewon, R., Lumyong, S., Niego, A.G.T., Abeywickrama, P.D., Aluthmuhandiram, J.P.S., Brahamanage, R.S., Brooks, S., Chaiyasen, A., Chethana, K.W.T., Chomnunti, P., Chepkirui, K., Chuankid, B., de Silva, N.I., Doilom, M., Faulds, C., Gentekaki, E., Gopalan, V., Kakumyan, P., Harishchandra, D., Hemachandran, H., Hongsanan, S., Karunarathna, A., Karunarathna, S.C., Khan, S., Kumla, J., Jayawardena, R.S., Liu, N., Luangharn, T., Macabeo, A.P.G., Marasinghe, D.S., Meeks, D., Mortimer, P.E., Mueller, P., Nadir, S., Nataraja, K.N., Nontachaiyapoom, S., O’Brien, M., Penkhrue, W., Phukhamsakda, C., Shaanker Ramanan, U., Rathnayaka, A.R., Sadaba, R.S., Sandargo, B., Samarakoon, B.C., Tennakoon, D.S., Siva, R., Sriprom, W., Suryanarayanan, T.S., Sujarit, K., Suwannarach, N., Suwunwong, T., Thongbai, B., Thongklang, N., Wei, D., Wijesinghe, N.S., Winiski, J., Yan, J., Yasanthika, E. &amp; Stadler, M. (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. <em>Fungal Diversity</em> 97: 1–136. https://doi.org/10.1007/s13225-019-00430-9</p>
<p>Index Fungorum. (2021) Available from: https://www.indexfungorum.org/names/names.asp (accessed 9 January 2021)</p>
<p>Issakainen, J., Jalava, J., Hyvönen, J., Sahlberg, N, Pirnes, T &amp; Campbell, C.K. (2003) Relationships of <em>Scopulariopsis</em> based on LSU rDNA sequences. <em>Medical Mycology</em> 41: 31–42. https://doi.org/10.1080/mmy.41.1.31.42</p>
<p>Jagielski, T., Sandoval-Denis, M., Yu, J., Yao, L., Bakuła, Z., Kalita, J., Skóra, M., Krzyściak, P., Sybren de Hoog, G., Guarro, J. &amp; Gené, J. (2016) Molecular taxonomy of <em>Scopulariopsis</em>-like fungi with description of new clinical and environmental species. <em>Fungal Biology</em> 120: 586–602. https://doi.org/10.1016/j.funbio.2016.01.014</p>
<p>Jayasiri, S.C., Hyde, K.D., Abd-Elsalam, K.A., Abdel-Wahab, M.A., Ariyawansa, H.A., Bhat, J., Buyck, B., Dai, Y.C., Ertz, D., Hidayat,I., Jeewon, R., Jones, E.B.G., Karunarathna, S.C., Kirk, P., Lei, C., Liu, J.K., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Ghobad Nejhad, M., Nilsson, H., Pang, K.L., Phookamsak, R., Rollins, A.W., Romero, A.I., Stephenson, S., Suetrong, S., Tsui, C.K.M.,Vizzini, A., Wen, T.C., de Silva, N.I., Promputtha, I. &amp; Kang, J.C. (2015) The faces of fungi database: fungal names linked with morphology, molecular and human attributes. <em>Fungal Diversity</em> 74: 18–357.&nbsp; https://doi.org/10.1007/s13225-015-0351-8</p>
<p>Joo, J.H. &amp; Hussein, K.A. (2012) Heavy metal tolerance of fungi isolated from contaminated soil. <em>Korean Journal of Soil Science and Fertilizer</em> 45: 565–571. https://doi.org/10.7745/KJSSF.2012.45.4.565</p>
<p>Kaifuchi, S., Nonaka, K., Mori, M, Shiomi, K, Ômura, S. &amp; Masuma, R. (2013) <em>Lecanicillium primulinum</em>, a new hyphomycete (Cordycipitaceae) from soils in the Okinawa’s main island and the Bonin Islands, Japan. <em>Mycoscience</em> 54: 291–296. https://doi.org/10.1016/j.myc.2012.10.006.</p>
<p>Karaca, O., Cameselle, C. &amp; Reddy, K.R. (2018) Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Reviews in <em>Environmental Science and Bio/Technology</em> 17: 205–228. https://doi.org/10.1007/s11157-017-9453-y</p>
<p>Katoh, K., Rozewicki, J. &amp; Yamada, K.D. (2019) MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. <em>Briefings in Bioinformatics</em> 20: 1160–1166.&nbsp; https://doi.org/10.1093/bib/bbx108</p>
<p>Kremer, R.J. (2017) Soil Health and Intensification of Agroecosytems. In <em>Biotechnology Impacts on Soil and Environmental Services</em>. (pp. 353–375). Academic Press.&nbsp; https://doi.org/10.1016/B978-0-12-805317-1.00016-6</p>
<p>Li, Q., Liu, J. &amp; Gadd, G.M. (2020) Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. <em>Applied Microbiology and Biotechnology </em>104: 8999–9008.&nbsp; https://doi.org/10.1007/s00253-020-10854-y</p>
<p>Li, T., Liu, Y., Lin, S., Liu, Y. &amp; Xie, Y. (2019) Soil pollution management in China: a brief introduction. <em>Sustainability</em> 11: 556. https://doi.org/10.3390/su11030556</p>
<p>Li, X.L., Ojaghian, M.R., Zhang, J.Z. &amp; Zhu, S.J. (2017) A new species of <em>Scopulariopsis</em> and its synergistic effect on pathogenicity of <em>Verticillium</em> <em>dahliae</em> on cotton plants. <em>Microbiological Research</em> 201: 12–20. https://doi.org/10.1016/j.micres.2017.04.006.</p>
<p>Li, W., Wang, M.M., Wang, X.G., Cheng, X.L., Guo, J.J., Bian, X.M. &amp; Cai, L. (2016) Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. <em>Scientific Reports</em> 6: 1–9. https://doi.org/10.1038/srep26528</p>
<p>Liu, Y.J., Whelen, S. &amp; Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. <em>Molecular Biology and Evolution</em> 16: 1799–1808.&nbsp; https://doi.org/10.1093/oxfordjournals.molbev.a026092</p>
<p>Lu, C., Kotze, D.J. &amp; Setälä, H.M. (2020) Soil sealing causes substantial losses in C and N storage in urban soils under cool climate. <em>Science of the Total Environment</em> 725: 138369. https://doi.org/10.1016/j.scitotenv.2020.138369</p>
<p>Mao, J. &amp; Guan, W. (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by <em>Scopulariopsis brevicaulis</em> and its application in bioremediation of PAH-contaminated soil. <em>Acta Agriculturae Scandinavica, Section B–Soil and Plant</em> <em>Science</em> 66: 399–405. https://doi.org/10.1080/09064710.2015.1137629</p>
<p>Miller, M.A., Pfeiffer, W. &amp; Schwartz, T. (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop 2010 (GCE), <em>New Orleans</em>, LA pp: 1–8 https://doi.org/10.1109/GCE.2010.5676129</p>
<p>Morel, J.L., Chenu, C. &amp; Lorenz, K. (2015) Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs). <em>Journal of Soils and Sediments</em> 15: 1659–1666. https://doi.org/10.1007/s11368-014-0926-0</p>
<p>Murata, T. &amp; Kawai, N. (2018) Degradation of the urban ecosystem function due to soil sealing: involvement in the heat island phenomenon and hydrologic cycle in the Tokyo metropolitan area. <em>Soil Science and Plant Nutrition</em> 64: 145–155. https://doi.org/10.1080/00380768.2018.1439342</p>
<p>Nagano, Y., Miura, T., Nishi, S., Lima, A.O., Nakayama, C., Pellizari, V.H &amp; Fujikura, K. (2017) Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau. <em>Deep Sea Research Part II: Topical Studies in Oceanography</em> 146: 59–67.&nbsp; https://doi.org/10.1016/j.dsr2.2017.05.012</p>
<p>Newbound, M., Mccarthy, M.A. &amp; Lebel, T. (2010) Fungi and the urban environment: A review. <em>Landscape and Urban Planning</em> 96: 138–145. https://doi.org/10.1016/j.landurbplan.2010.04.005</p>
<p>Pataki, D.E., Carreiro, M.M., Cherrier, J., Grulke, N.E., Jennings, V., Pincetl, S., Pouyat, R.V., Whitlow, T.H. &amp; Zipperer, W.C. (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. <em>Frontiers in Ecology and the Environment</em> 9: 27–36. https://doi.org/10.1890/090220</p>
<p>Poyntner, C., Prem, M., Mann, O., Blasi, B. &amp; Sterflinger, K. (2018) Selective screening: isolation of fungal strains from contaminated soils in Austria. <em>Die Bodenkultur: Journal of Land Management, Food and Environment</em> 68: 157–169. https://doi.org/10.1515/boku-2017-0014</p>
<p>Qayyum, S., Khan, I., Maqbool, F., Zhao, Y., Gu, Q. &amp; Peng, C. (2016) Isolation and characterization of heavy metal resistant fungal isolates from Industrial soil, China. <em>Pakistan journal of Zoology</em> 48.</p>
<p>Rashmi, M., Kushveer, J.S. &amp; Sarma, V.V. (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. <em>Mycosphere</em> 10: 798–1079. https://doi.org/10.1515/mgmc-2018-0038</p>
<p>Rambaut, A. (2010) FigTree. Tree figure drawing tool version 1.3.1, Institute of Evolutionary Biology, University of Edinburgh. Available from: https://tree.bio.ed.ac.uk/software/figtree/ (accessed 8 December 2020)</p>
<p>Rannala, B. &amp; Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. <em>Journal of Molecular Evolution </em>43: 304–311. https://doi.org/10.1007/BF02338839</p>
<p>Reese, A.T., Savage, A., Youngsteadt, E., McGuire, K.L., Koling, A., Watkins, O., Frank, S.D. &amp; Dunn, R.R. (2016) Urban stress is associated with variation in microbial species composition–but not richness–in Manhattan. <em>International Society for Microbial Ecology Journal</em> 10: 751–760. https://doi.org/10.1038/ismej.2015.152</p>
<p>Rehner, S.A. &amp; Buckley, E. (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to <em>Cordyceps</em> teleomorphs. <em>Mycologia</em> 97: 84–98. https://doi.org/10.1080/15572536.2006.11832842</p>
<p>Renella, G. (2020) Evolution of physico-chemical properties, microbial biomass and microbial activity of an urban soil after de-sealing. <em>Agriculture</em> 10: 596. https://doi.org/10.3390/agriculture10120596</p>
<p>Rhodes, C.J. (2014) Mycoremediation (bioremediation with fungi)–growing mushrooms to clean the earth. <em>Chemical Speciation &amp; Bioavailability</em> 26: 196–198. https://doi.org/10.3184/095422914X14047407349335</p>
<p>Rohilla, S. &amp; Salar, R. (2012) Isolation and Characterization of Various Fungal Strains from Agricultural Soil Contaminated with Pesticides. <em>Research Journal of Recent Sciences</em> 1: 297–303.</p>
<p>Rosas-Medina, M., Maciá-Vicente, J.G. &amp; Piepenbring, M. (2020) Diversity of fungi in soils with different degrees of degradation in Germany and Panama. <em>Mycobiology</em> 48: 20–28. https://doi.org/10.1080/12298093.2019.1700658</p>
<p>Ruisi, S., Barreca, D, Selbmann, L., Zucconi, L. &amp; Onofri, S. (2007) Fungi in Antarctica. <em>Reviews in Environmental Science and Bio/Technology</em> 6: 127–141.&nbsp; https://doi.org/10.1007/s11157-006-9107-y</p>
<p>Saccardo, P.A. (1881) <em>Fungi Italici Autographice Delineati (additis nonnullis extra-Italicis, asterisco notatis)</em>. Fascs 17–28. Tabs 641–1120. Italy, Patavii.</p>
<p>Saccardo, P.A. (1879) Fungi Gallici lecti a cl. viris P. Brunaud, C.C. Gillet et Abb. Letendre. <em>Michelia</em> 1: 500–538.</p>
<p>Sabuda, M.C., Rosenfeld, C.E., DeJournett, T.D., Schroeder, K. Wuolo-Journey, K. &amp; Santelli, C.M. (2020) Fungal bioremediation of selenium-contaminated industrial and municipal wastewaters. <em>Frontiers in Microbiology</em> 11: 2105. https://doi.org/10.3389/fmicb.2020.02105</p>
<p>Sandoval-Denis, M., Guarro, J., Cano-Lira, J.F., Sutton, D.A., Wiederhold, N.P., de Hoog, G.S., Abbott, S.P., Decock, C., Sigler, L. &amp; Gené, J. (2016) Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. <em>Studies in Mycology</em> 1: 193 –233. https://doi.org/10.1016/j.simyco.2016.07.002</p>
<p>Sandoval-Denis, M., Sutton, D.A., Fothergill, A.W., Cano-Lira, J., Gené, J., Decock, C.A., de Hoog, G.S., Guarro, J. (2013) <em>Scopulariopsis</em>, a poorly known opportunistic fungus: spectrum of species in clinical samples and in vitro responses to antifungal drugs. <em>Journal of Clinical Microbiology</em> 51: 3937–3943. https://doi.org/10.1128/JCM.01927-13</p>
<p>Senanayake, I.C., Rathnayaka, A.R., Marasinghe, D.S., Calabon, M.S., Gentekaki, E., Wanasinghe, D.N., Lee, H.B., Hurdeal, V.G., Pem, D., Dissanayake, L.S., Wijesinghe, S.N., Bundhun, D., Nguyen, T.T., Goonasekara, I.D., Abeywickrama, P.D., Bhunjun, C.S., Chomnunti, P., Boonmee, S., Jayawardena, R.S., Wijayawardene, N.N., Doilom, M., Jeewon, R., Bhat, J.D., Zhang, H.X. &amp; Xie, N. (2020) Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. <em>Mycosphere </em>11: 2678–2754. https://doi.org/10.5943/mycosphere/11/1/20</p>
<p>Schloter, M., Nannipieri, P., Sørensen, S.J. &amp; van Elsas, J.D. (2018) Microbial indicators for soil quality. <em>Biology and Fertility of Soils</em> 54: 1–10. https://doi.org/10.1007/s00374-017-1248-3</p>
<p>Species Fungorum. (2021) Available from: https://www.speciesfungorum.org/Names/Names.asp (accessed 12 January 2021)</p>
<p>Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033</p>
<p>Stevenson, P.C., Bidartondo, M.I., Blackhall-Miles, R., Cavagnaro, T.R., Cooper, A., Geslin, B., Koch, H., Lee, M.A., Moat, J., O’Hanlon, R., Sjöman, H., Sofo, A., Stara, K. &amp; Suz, L.M. (2020) The state of the world’s urban ecosystems: What can we learn from trees, fungi, and bees?.<em>Plants, People, Planet</em> 2: 482–498. https://doi.org/10.1002/ppp3.10143</p>
<p>Sung, G.H., Hywel-Jones, N.L., Sung, J.M. &amp; Luangsa-ard, J.J., Shrestha, B. &amp; Spatafora, J.W. (2007) Phylogenetic classification of <em>Cordyceps</em> and the clavicipitaceous fungi. <em>Studies in</em> <em>Mycology</em> 57: 5–59.&nbsp; https://doi.org/10.3114/sim.2007.57.01</p>
<p>Sung, G.H., Spatafora, J.W., Zare, R. &amp; Hodge, K.T. (2001) A revision of <em>Verticillium</em> sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. <em>Nova Hedwigia</em> 72: 311–328. https://doi.org/10.1127/nova.hedwigia/72/2001/311</p>
<p>Su, L., Zhu, H., Guo, Y., Du, X., Guo, J., Zhang, L. &amp; Qin, C. (2019) <em>Lecanicillium coprophilum</em> (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of <em>Marmota monax</em> in China. <em>Phytotaxa</em> 387: 55–62. https://doi.org/10.11646/phytotaxa.387.1.4</p>
<p>Sukarno, N., Kurihara, Y., Ilyas, M., Mangunwardoyo, W., Yuniarti, E., Sjamsuridzal, W., Park, J.Y., Saraswati, R., Inaba, S., Widyastuti, Y., Ando, K. &amp; Harayama, S. (2009) <em>Lecanicillium</em> and <em>Verticillium </em>species from Indonesia and Japan including three new species. <em>Mycoscience</em> 50: 369–379. https://doi.org/10.1007/S10267-009-0493-1</p>
<p>Sun, J.Z., Liu, X.Z., McKenzie, E.H.C., Jeewon, R., Liu, J.K., Zhang, X.L., Zhao, Q. &amp; Hyde, K.D. (2019) Fungicolous fungi: terminology, diversity, distribution, evolution, and species checklist<em>. Fungal Diversity</em> 95: 337–430. https://doi.org/10.1007/s13225-019-00422-9</p>
<p>Valenzuela-Lopez, N., Cano-Lira, J.F., Guarro, J., Sutton, D.A., Wiederhold, N., Crous, P.W. &amp; Stchigel, A.M. (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. <em>Studies in Mycology</em> 90: 1–69. https://doi.org/10.1016/j.simyco.2017.11.003</p>
<p>van Agtmaal, M., Straathof, A., Termorshuizen, A., Teurlincx, S., Hundscheid, M., Ruyters, S., Busschaert, P., Lievens, B. &amp; de Boer, W. (2017) Exploring the reservoir of potential fungal plant pathogens in agricultural soil. <em>Applied Soil Ecology</em> 121: 152–160.&nbsp; https://doi.org/10.1016/j.apsoil.2017.09.032</p>
<p>Vilgalys, R. &amp; Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several <em>Cryptococcus</em> species. <em>Journal of Bacteriology</em> 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990</p>
<p>Wanasinghe, D.N., Jeewon, R., Peršoh, D., Jones, E.B.G., Camporesi, E., Bulgakov, T.S., Gafforov, Y.S. &amp; Hyde, K.D. (2018) Taxonomic circumscription and phylogenetics of novel didymellaceous taxa with brown muriform spores. <em>Studies in Fungi</em> 3: 152–175 https://doi.org/10.5943/sif/3/1/17</p>
<p>Wanasinghe, D.N., Mortimer, P.E. &amp; Xu, J. (2021) Insight into the systematics of microfungi colonizing dead woody twigs of <em>Dodonaea viscosa</em> in Honghe (China). <em>Journal of Fungi</em> 7: 180. https://doi.org/10.3390/jof7030180</p>
<p>Wanasinghe, D.N., Wijayawardene, N.N., Xu, J., Cheewangkoon, R. &amp; Mortimer, P.E. (2020) Taxonomic novelties in <em>Magnolia</em>-associated pleosporalean fungi in the Kunming Botanical Gardens (Yunnan, China). <em>Plos One</em> 15: e0235855. https://doi.org/10.1371/journal.pone.0235855</p>
<p>White, T.J., Bruns, T.D., Lee, S.B. &amp; Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics.<em> In: </em>Gelfand, M.A., Sninsky, D.H., Innis, J.J. &amp; White, T.J. (Eds.) <em>PCR protocols: a guide to methods and applications</em>. Academic, London, pp. 315–322.&nbsp; https://doi.org/10.1016/B978-0-12-372180-8.50042-1</p>
<p>Wijayawardene, N.N., Hyde, K.D., Rajeshkumar, K.C., Hawksworth, D.L., Madrid, H., Kirk, P.M., Braun, U., Singh, R.V., Crous, P.W., Kukwa, M., Lücking, R., Kurtzman, C.P., Yurkov, A., Haelewaters, D., Aptroot, A., Lumbsch, H.T., Timdal, E., Ertz, D., Etayo, J., Phillips, A.J.L., Johannes, Z., Groenewald, J.Z., Papizadeh, M., Selbmann, L., Dayarathne, M.C., Weerakoon, G., Jones, E.B.G., Suetrong, S., Tian, Q., Castañeda-Ruiz, R.F, Bahkali, A.H., Pang, K.L., Tanaka, K., Dai, D.Q., Sakayaroj, J., Hujslová, M., Lombard, L., Shenoy, B.D., Suija, A., Maharachchikumbura, S.S.N., Thambugala, K.M., Wanasinghe, D.N., Sharma, B.O., Gaikwad, S., Pandit, G., Zucconi, L., Onofri, S., Egidi, E., Huzefa, A., Raja, H.A., Kodsueb, R., Cáceres, M.E.S., Pérez-Ortega, S., Fiuza, P.O., Monteiro, J.S., Vasilyeva, L.N., Shivas, R.G., Prieto, M., Wedin, M., Olariaga, I., Lateef, A.A., Agrawal, Y., Fazeli, S.A.S., Amoozegar, M.A., Zhao, G.Z., Pfliegler, W.P., Sharma, G., Oset, M., Abdel-Wahab, M.A., Takamatsu, S., Bensch, K., de Silva1, N.I., De Kesel, A., Karunarathna, A., Boonmee, S., Pfister, D.H., Lu, Y.Z., Luo, Z.L., Boonyuen, N., Daranagama, D.A., Senanayake, I.C., Jayasiri, S.C., Samarakoon, M.C., Zeng, X.Y., Doilom, M., Quijada, L., Rampadarath, S., Heredia, G., Dissanayake, A.J., Jayawardana, R.S., Perera, R.H., Tang, L.Z., Phukhamsakda, C., Hernández-Restrepo, M., Ma, X., Tibpromma, S., Gusmao, L.F.P., Weerahewa, D. &amp; Karunarathna, S.C. (2017) Notes for genera: Ascomycota. <em>Fungal Diversity</em> 86: 1–594. https://doi.org/10.1007/s13225-017-0386-0</p>
<p>Woudenberg, J.H.C., Aveskamp, M.M., de Gruyter, J., Spiers, A.G. &amp; Crous, P.W. (2009) Multiple <em>Didymella</em> teleomorphs are linked to the <em>Phoma clematidina</em> morphotype. <em>Persoonia</em> 22: 56–62.&nbsp; https://doi.org/10.3767/003158509X427808</p>
<p>Yasanthika, W.A.E., Wanasinghe, D.N., Karunarathna, S.C., Bhat, D.J., Samarakoon, S.M.B.C., Ren, G.C., Monkai, J., Mortimer, P.E. &amp; Hyde, K.D. (2020) Two new Sordariomycetes records from forest soils in Thailand. <em>Asian Journal of Mycology</em> 3: 456–472. https://doi.org/10.5943/ajom/3/1/16</p>
<p>Ye, F., Gong, D., Pang, C., Luo, J., Zeng, X. &amp; Shang, C. (2020) Analysis of fungal composition in mine-contaminated soils in Hechi city. <em>Current Microbiology</em> 77: 2685–2693. https://doi.org/10.1007/s00284-020-02044-w</p>
<p>Yang, Y., Mei, Y., Zhang, C., Zhang, R., Liao, X. &amp; Liu, Y. (2016) Heavy metal contamination in surface soils of the industrial district of Wuhan, China. <em>Human and Ecological Risk Assessment: An International Journal</em> 22: 126–140. https://doi.org/10.1080/10807039.2015.1056291</p>
<p>Zare, R. &amp; Gams, W. (2008) A revision of <em>Verticillium fungicola</em> species complex and its affinity with the genus <em>Lecanicillium</em>. <em>Mycological Research</em> 112: 811–824. https://doi.org/10.1016/j.mycres.2008.01.019</p>
<p>Zare, R., Gams, W. &amp; Culham, A. (2000) A revision of <em>Verticillium</em> section Prostrata. I. Phylogenetic studies using ITS sequences. <em>Nova Hedwigia</em> 71: 465–480.&nbsp; https://doi.org/10.1127/nova/71/2000/465</p>
<p>Zare, R. &amp; Gams, W. (2001) A revision of <em>Verticillium</em> section Prostrata. IV. The genera <em>Lecanicillium </em>and <em>Simplicillium</em> gen. nov. <em>Nova Hedwigia</em> 73: 1–50.&nbsp; https://dx.doi.org/10.1127/nova.hedwigia/73/2001/1</p>
<p>Zhang, T., Jia, R.L. &amp; Yu, L.Y. (2016a) Diversity and distribution of soil fungal communities associated with biological soil crusts in the southeastern Tengger Desert (China) as revealed by 454 pyrosequencing. <em>Fungal Ecology</em> 23: 156–163.&nbsp; https://doi.org/10.1016/j.funeco.2016.08.004</p>
<p>Zhang, X.Y., Wang, G.H., Xu, X.Y., Nong, X.H., Wang, J., Amin, M. &amp; Qi, S.H. (2016b) Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing. <em>Deep Sea Research Part I: Oceanographic Research Papers</em> 116: 99–105. https://doi.org/10.1016/j.dsr.2016.08.004</p>
<p>Zhang, Z.F., Liu, F., Zhou, X., Liu, X.Z., Liu, S.J. &amp; Cai, L. (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. <em>Persoonia</em> 39: 1–31 https://doi.org/10.3767/persoonia.2017.39.01</p>
<p>Zhaxybayeva, O. &amp; Gogarten, J.P. (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. <em>Genomics</em> 3: 1–15. https://doi.org/10.1186/1471-2164-3-4</p>
<p>Zhen, Z., Wang, S., Luo, S., Ren, L., Liang, Y., Yang, R., Li, Y., Zhang, Y., Deng, S., Zou, L., Lin, Z. &amp; Zhang, D. (2019) Significant impacts of both total amount and availability of heavy metals on the functions and assembly of soil microbial communities in different land use patterns. <em>Frontiers in Microbiology</em> 10: p2293. https://doi.org/10.3389/fmicb.2019.02293</p>