Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-07-09
Page range: 197–212
Abstract views: 55
PDF downloaded: 2

Asymmetric hybridization origin of Rhododendron agastum (Ericaceae) in Guizhou, China

College of Agriculture, Guizhou University, Guiyang, China
College of Agriculture, Guizhou University, Guiyang, China
College of Agriculture, Guizhou University, Guiyang, China
Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, China
College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
Baili Rhododendron Nature Reserve of Guizhou, Bijie, China
Eudicots Bidirectional asymmetric natural hybridization parental origin plastid DNA Rhododendron

Abstract

Rhododendron is one of the famous flowers in the world. Four wild Rhododendron species, namely, R. delavayi Franch., R. agastum Balf. f. et W. W. Smith., R. decorum Franch., and R. irroratum Franch., belong to subgenus Hymenanthes, which are sympatrically distributed in the Baili Rhododendron Nature Reserve of Guizhou Province, China. The intermediate morphology of R. agastum in the reserve, which is between R. delavayi and R irroratum or between R. delavayi and R. decorum, has been speculated that R. agastum is a hybrid of one of the two combinations. However, the exact parentage of R. agastum in the reserve remains controversial. In this study, the four Rhododendron species were investigated to identify the parental origin of R. agastum based on 13 morphological characteristics, 20 co-dominant inherited microsatellite markers, and two maternal inherited plastid DNA makers. Results of genetic structure and origin scenario clearly support that R. agastum is a natural hybrid between R. delavayi and R. irroratum rather than R. delavayi and R. decorum, which is consistent with their morphological characteristics. In addition, hybridization analysis indicates that R. agastum is dominated by F2 generation in the reserve. Furthermore, haplotype analysis suggests that natural hybridization between R. delavayi and R. irroratum is bidirectional but asymmetric with R. delavayi, the main maternal parent of R. agastum. Our results provide theoretical basis for future utilization and conservation of genetic resources of these Rhododendron species.

References

<p>Anderson, E. &amp; Thompson, E. (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160: 1217–1229. https://doi.org/10.1093/genetics/160.3.1217<br>Balfour, B. (1917) Rhododendron of the irroratum series. Transactions of the Botanical Society of Edinburgh 27: 157–220. https://doi.org/10.1080/03746601709468478<br>Bassam, B.J., Caeta, N., Antilles, G. &amp; Gresshoff, P.M. (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry 196: 80–83. https://doi.org/10.1016/0003-2697(91)90120-I<br>Bruni, I., Mattia, F.D., Fluch, S., Ferrari, C., Corazza, M. &amp; Dinelli, E. &amp; Labra, M. (2014) Genetic introgression of hybrid Rhododendron × intermedium Tausch is habitat mediated: Evidences from south-eastern Alps (Italy). Plant Biosystems 150: 449–458. https://doi.org/10.1080/11263504.2014.986246<br>Choudhary, S., Thakur, S., Saini, R.G. &amp; Bhardwaj, P. (2014) Development and characterization of genomic microsatellite markers in Rhododendron arboreum. Conservation Genetics Resources 6: 937–940. https://doi.org/10.1007/s12686-014-0246-0<br>Cornuet, J.-M., Pudlo, P., Veyssier, J., Dehne–Garcia, A., Gautier, M., Leblois, R., Marin, J.-M. &amp; Estoup, A. (2014) DIYABC v2.0: a software to make approximate bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30: 1187–1189. http://doi.org/10.1093/bioinformatics/btt763<br>Danet &amp; Frederic (2011) On some poorly known hybrids of ‘Rhododendron herzogii’ in New Guinea. Journal American Rhododendron Society 51: 11–21. https://search.informit.org/doi/10.3316/INFORMIT.048398068562555<br>Evanno, G., Regnaut, S. &amp; Goudet, J. (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14 (8): 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x<br>Excoffier, L. &amp; Foll, M. (2011) Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics 27: 1332–1334. https://doi.org/10.1093/bioinformatics/btr124<br>Bandelt, H.J., Forster, P. &amp; Rohl, A. (1999) Median-joining network for inferring intraspecific phylogenies. Molecular Biology and Evolution 16 (1): 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036<br>Goss, E.M., Tabima, J.F., Cooke, D.E.L., Restrepo, S., Fry, W.E., Forbes, G.A., Fieland, V.J., Cardenas, M. &amp; Grunwald, N.J. (2014) The Irish potato famine pathogen Phytophthora infestans originated in central Mexico rather than the Andes. Proceedings of the National Academy of Sciences of the United States of America 111: 8791–8796. https://doi.org/10.1073/pnas.1401884111<br>Healey, A., Furtado, A., Cooper, T. &amp; Henry, R.J. (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10: 21. https://doi.org/10.1186/1746-4811-10-21<br>Hou, H.M, Ye, H., Wang, Z., Wu, J.H., Gao, Y., Han, W., Na, D.C., Sun, G.L. &amp; Wang, Y.L. (2020) Demographic history and genetic differentiation of an endemic and endangered Ulmus lamellosa (Ulmus). BMC Plant Biology 20: 526. https://doi.org/10.1186/s12870-020-02723-7<br>Ivana, S., Allna, F., Mariaa, G., Elena, C., Alexander, R. &amp; Violetta, K. (2020) Is Rosa × archipelagica (Rosaceae, Rosoideae) really a spontaneous intersectional hybrid between R. rugosa and R. maximowicziana? Molecular data confirmation and evidence of paternal leakage. Phytotaxa 428 (2): 93–103. https://doi.org/10.11646/phytotaxa.428.2.3<br>Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. &amp; Drummond, A. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199<br>Khan, G., Nolzen, J., Schepker, H. &amp; Albach, D.C. (2020) Incongruent phylogenies and its implications for the study of diversification, taxonomy and genome size evolution of Rhododendron (Ericaceae) bioRxiv 2020.07.27.216218. https://doi.org/10.1101/2020.07.27.216218<br>Kumar, P., Gupta, V.K., Misra, A.K., Modi, D.R. &amp; Pandey, B.K. (2009) Potential of molecular markers in plant biotechnology. Plant Omics Journal 2 (4): 141–162. https://doi.org/10.1007/s11103-009-9494-x<br>Li, H.E., Guo, Q.Q., Li, Q &amp; Yang, L. (2020) Long-reads reveal that Rhododendron delavayi plastid genome contains extensive repeat sequences, and recombination exists among plastid genomes of photosynthetic Ericaceae. PeerJ 8: e9048. https://doi.org/10.7717/peerj.9048<br>Liu, T., Chen, Y., Chao, L., Wang, S., Wu, W., Dai, S., Wang, F. &amp; Fan, Q. (2014) Extensive hybridization and introgression between Melastoma candidum and M. sanguineum. PLoS ONE 9 (5): e96680. https://doi.org/10.1371/journal.pone.0096680<br>Milne, R.I. (2019) Rhododendrons International. American Rhododendron Society, New York, 98 pp.<br>Milne, R.I., Terzioglu, S. &amp; Abbott, R.J. (2003) A hybrid zone dominated by fertile F1s: maintenance of species barriers in Rhododendron. Molecular Ecology 12 (10): 2719–2729. https://doi.org/10.1046/j.1365-294X.2003.01942.x<br>Okamoto, A. &amp; Ureshino, K. (2015) Pre-and Post-fertilization Barriers in Hybridization between Evergreen Azalea Species and Rhododendron uwaense H. Hara &amp; T. Yamanake. The Horticulture Journal 84 (4): 355–364. https://doi.org/10.2503/hortj.MI-036<br>Peakall, R. &amp; Smouse, P.E. (2012) GenAlEx 6.5: Genetic analysis in Excel. population genetic software for teaching and research-an update. Bioinformatics 28 (19): 2537–2539. https://doi.org/10.1093/bioinformatics/bts460<br>Pritchard, J.K., Stephens, M. &amp; Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155(2): 945–959. https://doi.org/10.1093/genetics/155.2.945<br>Rozas, J., Juan, C.S.D., Messeguer, X. &amp; Ricardo, R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497. https://doi.org/10.1093/bioinformatics/btg359<br>Tagane, S., Hiramatsu, M. &amp; Okubo, H. (2008) Hybridization and asymmetric introgression between Rhododendron eriocarpum and R. indicum on Yakushima Island, Southwest Japan. Journal of Plant Research 121: 387–395. https://doi.org/10.1007/s10265-008-0167-7<br>Tamaki, I., Yoichi, W., Matsuki, Y., Suyama, Y. &amp; Mizuno, M. (2017) Inconsistency between morphological traits and ancestry of individuals in the hybrid zone between two Rhododendron japonoheptamerum varieties revealed by a genotyping-by-sequencing approach. Tree Genetics &amp; Genomes 13 (1): article no. 4. https://doi.org/10.1007/s11295-016-1084-x<br>Tamura, K., Stecher, G., Peterson, D., Filipski, A. &amp; Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version. Molecular Biology and Evolution 30 (12): 2725–2729. https://doi.org/10.1093/molbev/mst197<br>Wallace, L.E. (2006). Spatial genetic structure and frequency of interspecific hybridization in Platanthera aquilonis and P. dilatata (Orchidaceae) occurring in sympatry. American Journal of Botany 93 (7): 1001–1009. https://doi.org/10.3732/ajb.93.7.1001<br>Xing, W., Liao, J.Y., Cai, M.Y., Xia, Q.F., Liu, Y., Zeng, W. &amp; Jin, X.J. (2017) De novo assembly of transcriptome from Rhododendron latoucheae Franch. using Illumina sequencing and development of new EST-SSR markers for genetic diversity analysis in Rhododendron. Tree Genetics &amp; Genomes 13: article no. 53. https://doi.org/10.1007/s11295-017-1135-y<br>Zha, H.G., Miine, R.I. &amp; Sun, H. (2008) Morphological and molecular evidence of natural hybridization between two distantly related Rhododendron species from the Sino–Himalaya. Botanical Journal of the Linnean Society 156: 119–129. https://doi.org/10.1111/j.1095-8339.2007.00752.x<br>Zha, H.G., Miine, R.I. &amp; Sun, H. (2010) Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F1s in Yunnan, China. Annals of Botany 1: 89–100. https://doi.org/10.1093/aob/mcp267<br>Zhang, J.L., Ma, Y.P., Wu, Z.K., Dong, K., Zheng, S.L. &amp; Wang, W.W. (2017) Natural hybridization and introgression among sympatrically distributed Rhododendron species in Guizhou, China. Biochemical Systematics and Ecology 70: 268–273. https://doi.org/10.1016/j.bse.2016.12.014<br>Zhang, J.L., Zhang, C.Q., Gao, L.M., Yang, J.B. &amp; Li, H.T. (2007) Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence. Journal of Plant Research 120: 457–463. https://doi.org/10.1007/s10265-007-0076-1<br>Zhang, R., Gong, X. &amp; Folk, R. (2017) Evidence for continual hybridization rather than hybrid speciation between Ligularia duciformis and L. paradoxa (Asteraceae). PeerJ 5: e3884. https://doi.org/10.7717/peerj.3884<br>Zheng, S.L., Tian, X.L., Huang, C.L., Wang, L.J., Feng, Y. &amp; Zhang, J.L. (2017) Molecular and morphological evidence for natural hybridization between Rhododendron decorum and R. delavayi (Ericaceae). Biodiversity Science 25 (6): 627–637. https://doi.org/doi: 10.17520/biods.2017090</p>