Abstract
In the uppermost millimeters of soils is commonly found a thin layer of cryptobiotic organisms, including cyanobacteria, microalgae, lichens, mosses, fungi, bacteria and archaea. These communities are called Biological Soil Crusts (BSCs) or biocrusts and perform important ecological functions, mainly attributed to their capacity of providing soil stability and incorporate nutrients through nitrogen and carbon fixation. Among all the organisms found in the biocrusts, the filamentous cyanobacteria Microcoleus vaginatus and M. steenstrupii are the best studied soil colonizers. The genus Microcoleus is considered complex and has been showing close relation with some species of Phormidium. The poor understanding about these two genera is a limit to the description of the real composition of biocrusts and can generate underestimations in the diversity community and the use of wrong organisms in applied projects (e.g. environmental restoration). This work studied eight cyanobacterial populations from Brazilian BSCs sampled in the Caatinga biome. The populations presented Microcoleus-like and Phormidium-like morphologies, but the phylogenetic analyses based on 16S rRNA gene sequences showed that they represent three new genera and six new species of filamentous cyanobacteria associated to the cryptic genera, they are Pycnacronema caatingensis sp. nov., Pycnacronema edaphica sp. nov., Gracilinea arenicola gen. et sp. nov., Marmoreocelis xerophila gen. et sp. nov., Konicacronema caatinguensis gen. et sp. nov. and Trichocoleus caatingensis sp. nov. The generic name and specific epithets of the new taxa are proposed according to the provisions of the International Code of Nomenclature of algae, fungi, and plants.
References
Ayuso, S.V., Silva, A.G., Nelson,C., Barger, N.N. & Garcia-Pichel, F. (2017) Microbial nursery production of high-quality biological soil crusts biomass for restoration of degraded dryland soils. Environmental Microbiology 83: e02179-16.
<a href="https://doi.org/10.1128/AEM.02179-16">https://doi.org/10.1128/AEM.02179-16</a>
Barbosa, H.A., Kumar, T.V.L., Paredes, F., Elliott, S. & Ayuga, J.G. (2019) Assessment of caatinga response to drought using Meteosat-SEVIRI Normalized Difference Vegetation Index (2008–2016). ISPRS Journal of Photogrammetry and Remote Sensing 148: 235–252.
<a href="https://doi.org/10.1016/j.isprsjprs.2018.12.014">https://doi.org/10.1016/j.isprsjprs.2018.12.014</a>
Becerra-Absalon, I., Johansen, J.R., Mu~noz-Martin, M.A. & Mon-tejano, G. (2018) Chroakolemma gen. nov. (Leptolyngbyaceae,Cyanobacteria) from soil biocrusts in the semi-desert Central Region of Mexico. Phytotaxa 367 (3): 201–218.
<a href="https://doi.org/10.11646/phytotaxa.367.3.1">https://doi.org/10.11646/phytotaxa.367.3.1</a>
Belnap, J. (2005) “Crusts: biological” In: Hillel, D. (Ed.) Encyclopedia of soils in the environment. Elsevier, London, pp. 339–346.
<a href="https://doi.org/10.1016/B0-12-348530-4/00131-4">https://doi.org/10.1016/B0-12-348530-4/00131-4</a>
Boyer, S.L., Johansen, J.R. & Flechtner, V.R. (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. Journal of Phycology 38: 1222–1235.
<a href="https://doi.org/10.1046/j.1529-8817.2002.01168.x">https://doi.org/10.1046/j.1529-8817.2002.01168.x</a>
Bower, M.A., Mau, R.L., Maestre, F.T., Escolar, C. & Castillo-Monroy, A.P. (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. Functional Ecology 25: 787–795.
<a href="https://doi.org/10.1111/j.1365-2435.2011.01835.x">https://doi.org/10.1111/j.1365-2435.2011.01835.x</a>
Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., Salisch, M., Reisser, W. & Weber, B. (2009) Southern African Biological Soil Crusts are Ubiquitous and Highly Diverse in Drylands, Being Restricted by Rainfall Frequency. Microbial Ecology 57: 229–247.
<a href="https://doi.org/10.1007/s00248-008-9449-9">https://doi.org/10.1007/s00248-008-9449-9</a>
Dojani, S., Lakatos, M., Rascher, U., Wanek, W., Lüttge, U. & Büdel, B. (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. Flora 202: 521–529.
<a href="https://doi.org/10.1016/j.flora.2006.12.001">https://doi.org/10.1016/j.flora.2006.12.001</a>
Dulic, T., Meriluoto, J., Malesevic, T.P., Gajic, V., Vazic, T., Takodi, N., Obreht, I., Kostic, B., Kosijer, P., Khormali, F. & Svircev, Z. (2016) Cyanobacteria diversity and toxicity of biocrusts from the Caspian Lowland loess deposits, North Iran. Quaternary International 429: 1–12.
<a href="https://doi.org/10.1016/j.quaint.2016.02.046">https://doi.org/10.1016/j.quaint.2016.02.046</a>
Ewing, B. & Green, P. (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Research 8: 186–194.
<a href="https://doi.org/10.1101/gr.8.3.186">https://doi.org/10.1101/gr.8.3.186</a>
Ewing, B., Hillier, L., Wendl, M.C. & Green, P. (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Research 8: 175–185.
<a href="https://doi.org/10.1101/gr.8.3.175">https://doi.org/10.1101/gr.8.3.175</a>
Erwin, P.M. & Thacker, R.W. (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Molecular Ecology 17: 2937–2947.
<a href="https://doi.org/10.1111/j.1365-294X.2008.03808.x">https://doi.org/10.1111/j.1365-294X.2008.03808.x</a>
Garcia-Pichel, F. & Wojciechowski, M.F. (2009) The evolution of capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. Plos One 4: 1–6.
<a href="https://doi.org/10.1371/journal.pone.0007801">https://doi.org/10.1371/journal.pone.0007801</a>
Garcia-Pichel, F., López-Cortés, A. & Nübel, U. (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Applied and Environmental Microbiology 67: 1902–1910.
<a href="https://doi.org/10.1128/AEM.67.4.1902-1910.2001">https://doi.org/10.1128/AEM.67.4.1902-1910.2001</a>
Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. & Potrafka, R.M. (2013) Temperature drives the continental-scale distribution of microbes in the topsoil communities. Science 340: 1574–1577.
<a href="https://doi.org/10.1126/science.1236404">https://doi.org/10.1126/science.1236404</a>
Gomont, M. (1892) Monographie des Oscillariées (Nostocacées Homocystées). Annales des Sciences Naturelles, Botanique, 7 ser., 15: 263–368, 16: 91–264.
Gordon, D., Abajian, C. & Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Research 8: 195–202.
<a href="https://doi.org/10.1101/gr.8.3.195">https://doi.org/10.1101/gr.8.3.195</a>
Gundlapally, S.R. & Garcia-Pichel, F. (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microbial Ecology 52: 345–357.
<a href="https://doi.org/10.1007/s00248-006-9011-6">https://doi.org/10.1007/s00248-006-9011-6</a>
Hagemann, M., Henneberg, M., Felde, V.J.M.N.L., Berkowicz, S.M., Raanan, H., Pade, N., Felix-Henningsen, P. & Kaplan, A. (2017) Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel–effects of local conditions and disturbance. FEMS Microbiology Ecology fiw228.
<a href="https://doi.org/10.1093/femsec/fiw228">https://doi.org/10.1093/femsec/fiw228</a>
IBGE (2019) Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250 000. Rio de Janeiro: IBGE, 2019. Available from: <a href="https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101676">https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101676</a> (acessed December 2019)
Iteman, I., Rippka, R., Marsac, N.T. & Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of Cyanobacteria. Microbiology 146: 1275–1286.
<a href="https://doi.org/10.1099/00221287-146-6-1275">https://doi.org/10.1099/00221287-146-6-1275</a>
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitzm S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649.
<a href="https://doi.org/10.1093/bioinformatics/bts199">https://doi.org/10.1093/bioinformatics/bts199</a>
Kim, M., Oh, H.S., Park, S.C. & Chun, J. (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology 6: 346–351.
<a href="https://doi.org/10.1099/ijs.0.059774-0">https://doi.org/10.1099/ijs.0.059774-0</a>
Komárek, J. & Anagnostidis, K. (2005) Cyanoprokaryota II. Teil: Oscillatoriales. In: Büdel, B., Krienitz, L., Gärtner, G. & Schagerl, M. (Eds.) Sü?wasserflora von Mitteleuropa 19/2. Elsevier/Spektrum Akademischer Verlag, München, 759 pp.
Komárek, J. (2020) Quo vadis, taxonomy of cyanobacteria (2019). Fottea 20 (1): 104–110.
<a href="https://doi.org/10.5507/fot.2019.020">https://doi.org/10.5507/fot.2019.020</a>
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0. for bigger datasets. Molecular Biology and Evolution 33: 1870–1874.
<a href="https://doi.org/10.1093/molbev/msw054">https://doi.org/10.1093/molbev/msw054</a>
Lowe, T.M. & Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25 (5): 955–964.
<a href="https://doi.org/10.1093/nar/25.5.955">https://doi.org/10.1093/nar/25.5.955</a>
Malone, C.F.S., Rigonato, J., Laughinghouse IV, H.D., Schmidt, E.C., Bouzon, Z.L., Wilmotte, A., Fiore, M.F. & Sant’Anna, C.L. (2015) Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses. International Journal of Systematic and Evolutionary Microbiology 65: 2993–3007.
<a href="https://doi.org/10.1099/ijs.0.000369">https://doi.org/10.1099/ijs.0.000369</a>
Martins, M.D. & Branco, L.H.Z. (2016) Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. International Journal of Systematic and Evolutionary Microbiology 66: 3632–3641.
<a href="https://doi.org/10.1099/ijsem.0.001243">https://doi.org/10.1099/ijsem.0.001243</a>
Martins, M.D., Machado-de-Lima, N.M. & Branco, L.H.Z. (2018) Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus Pycnacronema (Coleofasciculaceae, Oscillatoriales). Journal of Phycology 55: 146–159.
<a href="https://doi.org/10.1111/jpy.12805">https://doi.org/10.1111/jpy.12805</a>
Martins, M.D., Rigonato, J., Taboga, S.R. & Branco, L.H.Z. (2016) Proposal of Ancylothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology 66 (6): 2396–2405.
<a href="https://doi.org/10.1099/ijsem.0.001044">https://doi.org/10.1099/ijsem.0.001044</a>
Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gatew Comput Environ Work GCE 2010.
<a href="https://doi.org/10.1109/GCE.2010.5676129">https://doi.org/10.1109/GCE.2010.5676129</a>
Mülsteinová, R., Johansen, J.R., Pietrasiak, N., Martin, M.P., Osorio-Santos, K. & Warren, S.D. (2014) Polyphasic characterization of Trichocoleus desertorum sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus Trichocoleus. Phytotaxa 163 (5): 241–261.
<a href="https://doi.org/10.11646/phytotaxa.163.5.1">https://doi.org/10.11646/phytotaxa.163.5.1</a>
Mülsteinová, R., Johansen, J.R., Pietrasiak, N. & Martin, M.P. (2014) Polyphasic characterization of Kastovskya adunca gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile. Phytotaxa 163 (4): 216–228.
<a href="https://doi.org/10.11646/phytotaxa.163.4.2">https://doi.org/10.11646/phytotaxa.163.4.2</a>
Neilan, B.A., Jacobs, J., Del Dot, T., Blackall, L.L., Hawkins, P.R. Cox, P.T. & Goodman, A.E. (1997) rDNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. International Journal of Systematic Bacteriology 47: 693–697.
<a href="https://doi.org/10.1099/00207713-47-3-693">https://doi.org/10.1099/00207713-47-3-693</a>
Nübel, U., Garcia-Pichel, F. & MUYZER, G. (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. PMID: 9251225, PMCID: PMC168636. Applied and Environmental Microbiology 6 3 (3): 3327–3332.
Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L. H., Ková?ik, L., Martin, M. P. & Johansen, J. R. (2014). Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria). European Journal of Phycology 49: 450–70.
<a href="https://doi.org/10.1128/AEM.63.8.3327-3332.1997">https://doi.org/10.1128/AEM.63.8.3327-3332.1997</a>
Patzelt, D.J., Hodac, L., Friedl, T., Pietrasiak, N. & Johansen, J.R. (2014) Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile, assessed by culture dependent and independent approaches. Journal of Phycology 50: 698–710.
<a href="https://doi.org/10.1111/jpy.12196">https://doi.org/10.1111/jpy.12196</a>
Petersen, J.B. (1928) The aërial algae of Iceland. In: Rosenvinge, L.K. & Warming, E. (Eds.) The Botany of Iceland. Vol. II. Part II. Wheldon and Wesley, Copenhagen & London, pp. 251–447.
Pietrasiak, N., Mühlsteinová, R., Siegesmund, M.A. & Johansen, J.R. (2014) Phylogenetic placement of Symplocastrum (Phormidiaceae, Cyanophyceae) with a new combination S. californicum and two new species: S. flechtnerae and S. torsivum. Phycologia 53: 529–541.
<a href="https://doi.org/10.2216/14-029.1">https://doi.org/10.2216/14-029.1</a>
Pietrasiak, N., Osorio-Santos, K., Shalysin, S., Martin, M.P. & Johansen, J.R. (2019) When is a lineage a species? A casa study in Myxacorys gen. nov. (Synechococcales: Cyanoabcteria) with the description of two new species from the Americas. Journal of Phycology 55: 976–996.
<a href="https://doi.org/10.1111/jpy.12897">https://doi.org/10.1111/jpy.12897</a>
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology 111: 1–61.
<a href="https://doi.org/10.1099/00221287-111-1-1">https://doi.org/10.1099/00221287-111-1-1</a>
Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–42.
<a href="https://doi.org/10.1093/sysbio/sys029">https://doi.org/10.1093/sysbio/sys029</a>
Rossi, F. & De Philippis, R. (2015) Role of cyanobacteria exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5: 1218–1238.
<a href="https://doi.org/10.3390/life5021218">https://doi.org/10.3390/life5021218</a>
SamBrook, J. & Russell, D.W. (2001) Molecular Cloning, volume 1: a laboratory manual. CSHL Press, Cold Spring Harbor, New York, 2344 pp.
Schulz, K., Mikhailyuk, T., Drebler, M., Leinweber, P. & Karsten, U. (2016) Biological soil crusts from coastal dunes at the Baltic Sea: Cyanobacterial and algal biodiversity and Related Soil Properties. Microbial Ecology 71: 178–193.
<a href="https://doi.org/10.1007/s00248-015-0691-7">https://doi.org/10.1007/s00248-015-0691-7</a>
Sciuto, K., Andreoli, C., Rascio, N., Larocca, N. & Moro, I. (2012) Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics 28: 357–374.
<a href="https://doi.org/10.1111/j.1096-0031.2011.00386.x">https://doi.org/10.1111/j.1096-0031.2011.00386.x</a>
Schmidt, S.K., Reed, S.C., Nemergut, D.R., Grandy, A.S., Cleveland, C.C., Weintraub, M.N., Hill, A.W., Costello, E.K., Meyer, A.F., Neff, J.C. & Martin, A.M. (2008) The earliest stages of ecosystem succession in high-elevation (5000 meters above sea level), recently deglaciated soils. Proceedings of the Royal Society 275: 2793–2802.
<a href="https://doi.org/10.1098/rspb.2008.0808">https://doi.org/10.1098/rspb.2008.0808</a>
Siegesmund, M.A., Johansen, J.R., Kasten, U. & Fridl, T. (2008) Coleofasciculus Gen. Nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. Journal of Phycology 44: 1572–1585.
<a href="https://doi.org/10.1111/j.1529-8817.2008.00604.x">https://doi.org/10.1111/j.1529-8817.2008.00604.x</a>
Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.
<a href="https://doi.org/10.1093/bioinformatics/btu033">https://doi.org/10.1093/bioinformatics/btu033</a>
Strunecký, O., Elster, J. & Komárek, J. (2011) Taxonomic revision of the freshwater cyanobacterium “Phormidium” murrayi = Wilmottia murrayi. Fottea 11 (1): 57–71.
<a href="https://doi.org/10.5507/fot.2011.007">https://doi.org/10.5507/fot.2011.007</a>
Strunecký, O., Komárek, J., Johansen, J.R., Lukesová, A. & Elster, J. (2013) Molecular and morphological criteria for revision of the genus Microcoleus (Oscillatoriales, Cyanobacteria). Journal of Phycology 49: 1167–1180.
<a href="https://doi.org/10.1111/jpy.12128">https://doi.org/10.1111/jpy.12128</a>
Strunecký, O., Komárek, J. & Šmarda, J. (2014) Kamptonema (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic Phormidium on the basis of combined molecular and cytomorphological markers. Preslia 86 (2): 193–208.
Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. (2003) Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxel (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology 69: 5157–5169.
<a href="https://doi.org/10.1128/AEM.69.9.5157-5169.2003">https://doi.org/10.1128/AEM.69.9.5157-5169.2003</a>
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) ClustalW: improving the sensibility of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix. Nucleic Acids Research 22: 4673–4680.
<a href="https://doi.org/10.1093/nar/22.22.4673">https://doi.org/10.1093/nar/22.22.4673</a>
Zheng, Y., Xu, M., Zhao, J., Bei, S. & Hao, L. (2011) Effects of inoculated Microcoleus vaginatus on the structure and function of biological soil crusts of desert. Biology and Fertility of Soils 47: 473–480.
<a href="https://doi.org/10.1007/s00374-010-0521-5">https://doi.org/10.1007/s00374-010-0521-5</a>
Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31 (13): 3406–3415.
<a href="https://doi.org/10.1093/nar/gkg595">https://doi.org/10.1093/nar/gkg595</a>