Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-11-09
Page range: 263–281
Abstract views: 196
PDF downloaded: 1

Biological soil crusts: new genera and species of Cyanobacteria from Brazilian semi-arid regions

Zoology and Botany Department, IBILCE/UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265–BR15051-000, São José do Rio Preto (SP), Brazil
Zoology and Botany Department, IBILCE/UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265–BR15051-000, São José do Rio Preto (SP), Brazil
Algae Cyanobacteria Microcoleus new genera Phylogeny Systematics

Abstract

In the uppermost millimeters of soils is commonly found a thin layer of cryptobiotic organisms, including cyanobacteria, microalgae, lichens, mosses, fungi, bacteria and archaea. These communities are called Biological Soil Crusts (BSCs) or biocrusts and perform important ecological functions, mainly attributed to their capacity of providing soil stability and incorporate nutrients through nitrogen and carbon fixation. Among all the organisms found in the biocrusts, the filamentous cyanobacteria Microcoleus vaginatus and M. steenstrupii are the best studied soil colonizers. The genus Microcoleus is considered complex and has been showing close relation with some species of Phormidium. The poor understanding about these two genera is a limit to the description of the real composition of biocrusts and can generate underestimations in the diversity community and the use of wrong organisms in applied projects (e.g. environmental restoration). This work studied eight cyanobacterial populations from Brazilian BSCs sampled in the Caatinga biome. The populations presented Microcoleus-like and Phormidium-like morphologies, but the phylogenetic analyses based on 16S rRNA gene sequences showed that they represent three new genera and six new species of filamentous cyanobacteria associated to the cryptic genera, they are Pycnacronema caatingensis sp. nov., Pycnacronema edaphica sp. nov., Gracilinea arenicola gen. et sp. nov., Marmoreocelis xerophila gen. et sp. nov., Konicacronema caatinguensis gen. et sp. nov. and Trichocoleus caatingensis sp. nov. The generic name and specific epithets of the new taxa are proposed according to the provisions of the International Code of Nomenclature of algae, fungi, and plants.

References

<p class="Reference">Alves, J.A.A., Araújo, M.A. &amp; Santos do Nascimento, S. (2009) Degradação da Caatinga: uma investigação ecogeográfica. Revista Caatinga. Available from: <a href="https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/560">https://periodicos.ufersa.edu.br/index.php/caatinga/article/view/560</a> (accessed December 2019).</p><p class="Reference">Ayuso, S.V., Silva, A.G., Nelson,C., Barger, N.N. &amp; Garcia-Pichel, F. (2017) Microbial nursery production of high-quality biological soil crusts biomass for restoration of degraded dryland soils. <em>Environmental Microbiology</em> 83: e02179-16.</p><p class="Reference">         <a href="https://doi.org/10.1128/AEM.02179-16">https://doi.org/10.1128/AEM.02179-16</a></p><p class="Reference">Barbosa, H.A., Kumar, T.V.L., Paredes, F., Elliott, S. &amp; Ayuga, J.G. (2019) Assessment of <em>caatinga</em> response to drought using Meteosat-SEVIRI Normalized Difference Vegetation Index (2008–2016). <em>ISPRS Journal of Photogrammetry and Remote Sensing</em> 148: 235–252.</p><p class="Reference">         <a href="https://doi.org/10.1016/j.isprsjprs.2018.12.014">https://doi.org/10.1016/j.isprsjprs.2018.12.014</a></p><p class="Reference">Becerra-Absalon, I., Johansen, J.R., Mu~noz-Martin, M.A. &amp; Mon-tejano, G. (2018) <em>Chroakolemma</em> gen. nov. (Leptolyngbyaceae,Cyanobacteria) from soil biocrusts in the semi-desert Central Region of Mexico. <em>Phytotaxa</em> 367 (3): 201–218.</p><p class="Reference">         <a href="https://doi.org/10.11646/phytotaxa.367.3.1">https://doi.org/10.11646/phytotaxa.367.3.1</a></p><p class="Reference">Belnap, J. (2005) “Crusts: biological” <em>In: </em>Hillel, D. (Ed.) <em>Encyclopedia of soils in the environment</em>. Elsevier, London, pp. 339–346.</p><p class="Reference">         <a href="https://doi.org/10.1016/B0-12-348530-4/00131-4">https://doi.org/10.1016/B0-12-348530-4/00131-4</a></p><p class="Reference">Boyer, S.L., Johansen, J.R. &amp; Flechtner, V.R. (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. <em>Journal of Phycology</em> 38: 1222–1235.</p><p class="Reference">         <a href="https://doi.org/10.1046/j.1529-8817.2002.01168.x">https://doi.org/10.1046/j.1529-8817.2002.01168.x</a></p><p class="Reference">Bower, M.A., Mau, R.L., Maestre, F.T., Escolar, C. &amp; Castillo-Monroy, A.P. (2011) Functional profiles reveal unique ecological roles of various biological soil crust organisms. <em>Functional Ecology</em> 25: 787–795.</p><p class="Reference">         <a href="https://doi.org/10.1111/j.1365-2435.2011.01835.x">https://doi.org/10.1111/j.1365-2435.2011.01835.x</a></p><p class="Reference">Büdel, B., Darienko, T., Deutschewitz, K., Dojani, S., Friedl, T., Mohr, K.I., Salisch, M., Reisser, W. &amp; Weber, B. (2009) Southern African Biological Soil Crusts are Ubiquitous and Highly Diverse in Drylands, Being Restricted by Rainfall Frequency. <em>Microbial Ecology</em> 57: 229–247.</p><p class="Reference">         <a href="https://doi.org/10.1007/s00248-008-9449-9">https://doi.org/10.1007/s00248-008-9449-9</a></p><p class="Reference">Dojani, S., Lakatos, M., Rascher, U., Wanek, W., Lüttge, U. &amp; Büdel, B. (2007) Nitrogen input by cyanobacterial biofilms of an inselberg into a tropical rainforest in French Guiana. <em>Flora</em> 202: 521–529.</p><p class="Reference">         <a href="https://doi.org/10.1016/j.flora.2006.12.001">https://doi.org/10.1016/j.flora.2006.12.001</a></p><p class="Reference">Dulic, T., Meriluoto, J., Malesevic, T.P., Gajic, V., Vazic, T., Takodi, N., Obreht, I., Kostic, B., Kosijer, P., Khormali, F. &amp; Svircev, Z. (2016) Cyanobacteria diversity and toxicity of biocrusts from the Caspian Lowland loess deposits, North Iran. <em>Quaternary International</em> 429: 1–12.</p><p class="Reference">         <a href="https://doi.org/10.1016/j.quaint.2016.02.046">https://doi.org/10.1016/j.quaint.2016.02.046</a></p><p class="Reference">Ewing, B. &amp; Green, P. (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. <em>Genome Research</em> 8: 186–194.</p><p class="Reference">         <a href="https://doi.org/10.1101/gr.8.3.186">https://doi.org/10.1101/gr.8.3.186</a></p><p class="Reference">Ewing, B., Hillier, L., Wendl, M.C. &amp; Green, P. (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. <em>Genome Research</em> 8: 175–185.</p><p class="Reference">         <a href="https://doi.org/10.1101/gr.8.3.175">https://doi.org/10.1101/gr.8.3.175</a></p><p class="Reference">Erwin, P.M. &amp; Thacker, R.W. (2008) Cryptic diversity of the symbiotic cyanobacterium <em>Synechococcus spongiarum</em> among sponge hosts. <em>Molecular Ecology </em>17: 2937–2947.</p><p class="Reference">         <a href="https://doi.org/10.1111/j.1365-294X.2008.03808.x">https://doi.org/10.1111/j.1365-294X.2008.03808.x</a></p><p class="Reference">Garcia-Pichel, F. &amp; Wojciechowski, M.F. (2009) The evolution of capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. <em>Plos One</em> 4: 1–6.</p><p class="Reference">         <a href="https://doi.org/10.1371/journal.pone.0007801">https://doi.org/10.1371/journal.pone.0007801</a></p><p class="Reference">Garcia-Pichel, F., López-Cortés, A. &amp; Nübel, U. (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. <em>Applied and Environmental Microbiology</em> 67: 1902–1910.</p><p class="Reference">         <a href="https://doi.org/10.1128/AEM.67.4.1902-1910.2001">https://doi.org/10.1128/AEM.67.4.1902-1910.2001</a></p><p class="Reference">Garcia-Pichel, F., Loza, V., Marusenko, Y., Mateo, P. &amp; Potrafka, R.M. (2013) Temperature drives the continental-scale distribution of microbes in the topsoil communities. <em>Science</em> 340: 1574–1577.</p><p class="Reference">         <a href="https://doi.org/10.1126/science.1236404">https://doi.org/10.1126/science.1236404</a></p><p class="Reference">Gomont, M. (1892) Monographie des Oscillariées (Nostocacées Homocystées). <em>Annales des Sciences Naturelles, Botanique, 7 ser.</em>, 15: 263–368, 16: 91–264.</p><p class="Reference">Gordon, D., Abajian, C. &amp; Green, P. (1998) Consed: a graphical tool for sequence finishing. <em>Genome Research</em> 8: 195–202.</p><p class="Reference">         <a href="https://doi.org/10.1101/gr.8.3.195">https://doi.org/10.1101/gr.8.3.195</a></p><p class="Reference">Gundlapally, S.R. &amp; Garcia-Pichel, F. (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. <em>Microbial Ecology</em> 52: 345–357.</p><p class="Reference">         <a href="https://doi.org/10.1007/s00248-006-9011-6">https://doi.org/10.1007/s00248-006-9011-6</a></p><p class="Reference">Hagemann, M., Henneberg, M., Felde, V.J.M.N.L., Berkowicz, S.M., Raanan, H., Pade, N., Felix-Henningsen, P. &amp; Kaplan, A. (2017) Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel–effects of local conditions and disturbance. FEMS Microbiology Ecology fiw228.</p><p class="Reference">         <a href="https://doi.org/10.1093/femsec/fiw228">https://doi.org/10.1093/femsec/fiw228</a></p><p class="Reference">IBGE (2019) Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250 000. Rio de Janeiro: IBGE, 2019. Available from: <a href="https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&amp;id=2101676">https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&amp;id=2101676</a> (acessed December 2019)</p><p class="Reference">Iteman, I., Rippka, R., Marsac, N.T. &amp; Herdman, M. (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of Cyanobacteria. <em>Microbiology</em> 146: 1275–1286.</p><p class="Reference">         <a href="https://doi.org/10.1099/00221287-146-6-1275">https://doi.org/10.1099/00221287-146-6-1275</a></p><p class="Reference">Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitzm S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. &amp; Drummond, A. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. <em>Bioinformatics</em> 28: 1647–1649.</p><p class="Reference">         <a href="https://doi.org/10.1093/bioinformatics/bts199">https://doi.org/10.1093/bioinformatics/bts199</a></p><p class="Reference">Kim, M., Oh, H.S., Park, S.C. &amp; Chun, J. (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. <em>International Journal of Systematic and Evolutionary Microbiology</em> 6: 346–351.</p><p class="Reference">         <a href="https://doi.org/10.1099/ijs.0.059774-0">https://doi.org/10.1099/ijs.0.059774-0</a></p><p class="Reference">Komárek, J. &amp; Anagnostidis, K. (2005) Cyanoprokaryota II. Teil: Oscillatoriales. <em>In</em>: Büdel, B., Krienitz, L., Gärtner, G. &amp; Schagerl, M. (Eds.) <em>Süβwasserflora von Mitteleuropa 19/2</em>. Elsevier/Spektrum Akademischer Verlag, München, 759 pp.</p><p class="Reference">Komárek, J. (2020) Quo vadis, taxonomy of cyanobacteria (2019). <em>Fottea</em> 20 (1): 104–110.</p><p class="Reference">         <a href="https://doi.org/10.5507/fot.2019.020">https://doi.org/10.5507/fot.2019.020</a></p><p class="Reference">Kumar, S., Stecher, G. &amp; Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0. for bigger datasets. <em>Molecular Biology and Evolution</em>  33: 1870–1874.</p><p class="Reference">         <a href="https://doi.org/10.1093/molbev/msw054">https://doi.org/10.1093/molbev/msw054</a></p><p class="Reference">Lowe, T.M. &amp; Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. <em>Nucleic Acids Research</em> 25 (5): 955–964.</p><p class="Reference">         <a href="https://doi.org/10.1093/nar/25.5.955">https://doi.org/10.1093/nar/25.5.955</a></p><p class="Reference">Malone, C.F.S., Rigonato, J., Laughinghouse IV, H.D., Schmidt, E.C., Bouzon, Z.L., Wilmotte, A., Fiore, M.F. &amp; Sant’Anna, C.L. (2015) <em>Cephalothrix</em> <em>gen. nov.</em> (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses. <em>International Journal of Systematic and Evolutionary Microbiology</em> 65: 2993–3007.</p><p class="Reference">         <a href="https://doi.org/10.1099/ijs.0.000369">https://doi.org/10.1099/ijs.0.000369</a></p><p class="Reference">Martins, M.D. &amp; Branco, L.H.Z. (2016) <em>Potamolinea</em> <em>gen. nov.</em> (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. <em>International Journal of Systematic and Evolutionary Microbiology</em> 66: 3632–3641.</p><p class="Reference">         <a href="https://doi.org/10.1099/ijsem.0.001243">https://doi.org/10.1099/ijsem.0.001243</a></p><p class="Reference">Martins, M.D., Machado-de-Lima, N.M. &amp; Branco, L.H.Z. (2018) Polyphasic approach using multilocus analyses supports the establishment of the new aerophytic cyanobacterial genus <em>Pycnacronema</em> (Coleofasciculaceae, Oscillatoriales). <em>Journal of Phycology</em> 55: 146–159.</p><p class="Reference">         <a href="https://doi.org/10.1111/jpy.12805">https://doi.org/10.1111/jpy.12805</a></p><p class="Reference">Martins, M.D., Rigonato, J., Taboga, S.R. &amp; Branco, L.H.Z. (2016) Proposal of <em>Ancylothrix</em> <em>gen. nov.</em>, a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. <em>International Journal of Systematic and Evolutionary Microbiology</em> 66 (6): 2396–2405.</p><p class="Reference">         <a href="https://doi.org/10.1099/ijsem.0.001044">https://doi.org/10.1099/ijsem.0.001044</a></p><p class="Reference">Miller, M.A., Pfeiffer, W. &amp; Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gatew Comput Environ Work GCE 2010.</p><p class="Reference">         <a href="https://doi.org/10.1109/GCE.2010.5676129">https://doi.org/10.1109/GCE.2010.5676129</a></p><p class="Reference">Mülsteinová, R., Johansen, J.R., Pietrasiak, N., Martin, M.P., Osorio-Santos, K. &amp; Warren, S.D. (2014) Polyphasic characterization of <em>Trichocoleus desertorum </em>sp. nov. (Pseudanabaenales, Cyanobacteria) from desert soils and phylogenetic placement of the genus <em>Trichocoleus. Phytotaxa</em> 163 (5): 241–261.</p><p class="Reference">         <a href="https://doi.org/10.11646/phytotaxa.163.5.1">https://doi.org/10.11646/phytotaxa.163.5.1</a></p><p class="Reference">Mülsteinová, R., Johansen, J.R., Pietrasiak, N. &amp; Martin, M.P. (2014) Polyphasic characterization of <em>Kastovskya adunca</em> gen. nov. et comb. nov. (Cyanobacteria: Oscillatoriales), from desert soils of the Atacama Desert, Chile. <em>Phytotaxa </em>163 (4): 216–228.</p><p class="Reference">         <a href="https://doi.org/10.11646/phytotaxa.163.4.2">https://doi.org/10.11646/phytotaxa.163.4.2</a></p><p class="Reference">Neilan, B.A., Jacobs, J., Del Dot, T., Blackall, L.L., Hawkins, P.R. Cox, P.T. &amp; Goodman, A.E. (1997) rDNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus <em>Microcystis</em>. <em>International Journal of Systematic Bacteriology</em> 47: 693–697.</p><p class="Reference">         <a href="https://doi.org/10.1099/00207713-47-3-693">https://doi.org/10.1099/00207713-47-3-693</a></p><p class="Reference">Nübel, U., Garcia-Pichel, F. &amp; MUYZER, G. (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. PMID: 9251225, PMCID: PMC168636. <em>Applied and Environmental Microbiology</em> 6 3 (3): 3327–3332.</p><p class="Reference">Osorio-Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L. H., Kováčik, L., Martin, M. P. &amp; Johansen, J. R. (2014). Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria). <em>European Journal of Phycology</em> 49: 450–70.</p><p class="Reference">         <a href="https://doi.org/10.1128/AEM.63.8.3327-3332.1997">https://doi.org/10.1128/AEM.63.8.3327-3332.1997</a></p><p class="Reference">Patzelt, D.J., Hodac, L., Friedl, T., Pietrasiak, N. &amp; Johansen, J.R. (2014) Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile, assessed by culture dependent and independent approaches. <em>Journal of Phycology</em> 50: 698–710.</p><p class="Reference">         <a href="https://doi.org/10.1111/jpy.12196">https://doi.org/10.1111/jpy.12196</a></p><p class="Reference">Petersen, J.B. (1928) The aërial algae of Iceland. <em>In</em>: Rosenvinge, L.K. &amp; Warming, E. (Eds.) <em>The Botany of Iceland</em>. Vol. II. Part II. Wheldon and Wesley, Copenhagen &amp; London, pp. 251–447.</p><p class="Reference">Pietrasiak, N., Mühlsteinová, R., Siegesmund, M.A. &amp; Johansen, J.R. (2014) Phylogenetic placement of <em>Symplocastrum</em> (Phormidiaceae, Cyanophyceae) with a new combination S. californicum and two new species: <em>S. flechtnerae</em> and<em> S. torsivum. Phycologia</em> 53: 529–541.</p><p class="Reference">         <a href="https://doi.org/10.2216/14-029.1">https://doi.org/10.2216/14-029.1</a></p><p class="Reference">Pietrasiak, N., Osorio-Santos, K., Shalysin, S., Martin, M.P. &amp; Johansen, J.R. (2019) When is a lineage a species? A casa study in Myxacorys gen. nov. (Synechococcales: Cyanoabcteria) with the description of two new species from the Americas. <em>Journal of Phycology</em> 55: 976–996.</p><p class="Reference">         <a href="https://doi.org/10.1111/jpy.12897">https://doi.org/10.1111/jpy.12897</a></p><p class="Reference">Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. &amp; Stanier, R.Y. (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. <em>Journal of General Microbiology</em> 111: 1–61.</p><p class="Reference">         <a href="https://doi.org/10.1099/00221287-111-1-1">https://doi.org/10.1099/00221287-111-1-1</a></p><p class="Reference">Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. &amp; Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. <em>Systematic Biology </em>61: 539–42.</p><p class="Reference">         <a href="https://doi.org/10.1093/sysbio/sys029">https://doi.org/10.1093/sysbio/sys029</a></p><p class="Reference">Rossi, F. &amp; De Philippis, R. (2015) Role of cyanobacteria exopolysaccharides in phototrophic biofilms and in complex microbial mats. <em>Life</em> 5: 1218–1238.</p><p class="Reference">         <a href="https://doi.org/10.3390/life5021218">https://doi.org/10.3390/life5021218</a></p><p class="Reference">SamBrook, J. &amp; Russell, D.W. (2001) <em>Molecular Cloning, volume 1: a laboratory manual</em>. CSHL Press, Cold Spring Harbor, New York, 2344 pp.</p><p class="Reference">Schulz, K., Mikhailyuk, T., Drebler, M., Leinweber, P. &amp; Karsten, U. (2016) Biological soil crusts from coastal dunes at the Baltic Sea: Cyanobacterial and algal biodiversity and Related Soil Properties. <em>Microbial Ecology</em> 71: 178–193.</p><p class="Reference">         <a href="https://doi.org/10.1007/s00248-015-0691-7">https://doi.org/10.1007/s00248-015-0691-7</a></p><p class="Reference">Sciuto, K., Andreoli, C., Rascio, N., Larocca, N. &amp; Moro, I. (2012) Polyphasic approach and typification of selected <em>Phormidium</em> strains (Cyanobacteria). <em>Cladistics</em> 28: 357–374.</p><p class="Reference">         <a href="https://doi.org/10.1111/j.1096-0031.2011.00386.x">https://doi.org/10.1111/j.1096-0031.2011.00386.x</a></p><p class="Reference">Schmidt, S.K., Reed, S.C., Nemergut, D.R., Grandy, A.S., Cleveland, C.C., Weintraub, M.N., Hill, A.W., Costello, E.K., Meyer, A.F., Neff, J.C. &amp; Martin, A.M. (2008) The earliest stages of ecosystem succession in high-elevation (5000 meters above sea level), recently deglaciated soils. <em>Proceedings of the Royal Society</em> 275: 2793–2802.</p><p class="Reference">         <a href="https://doi.org/10.1098/rspb.2008.0808">https://doi.org/10.1098/rspb.2008.0808</a></p><p class="Reference">Siegesmund, M.A., Johansen, J.R., Kasten, U. &amp; Fridl, T. (2008) <em>Coleofasciculus </em>Gen. Nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus <em>Microcoleus </em>Gomont. <em>Journal of Phycology</em> 44: 1572–1585.</p><p class="Reference">         <a href="https://doi.org/10.1111/j.1529-8817.2008.00604.x">https://doi.org/10.1111/j.1529-8817.2008.00604.x</a></p><p class="Reference">Stamatakis, A. (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. <em>Bioinformatics</em> 30: 1312–1313.</p><p class="Reference">         <a href="https://doi.org/10.1093/bioinformatics/btu033">https://doi.org/10.1093/bioinformatics/btu033</a></p><p class="Reference">Strunecký, O., Elster, J. &amp; Komárek, J. (2011) Taxonomic revision of the freshwater cyanobacterium “<em>Phormidium</em>” <em>murrayi</em> = <em>Wilmottia murrayi</em>. <em>Fottea</em> 11 (1): 57–71.</p><p class="Reference">         <a href="https://doi.org/10.5507/fot.2011.007">https://doi.org/10.5507/fot.2011.007</a></p><p class="Reference">Strunecký, O., Komárek, J., Johansen, J.R., Lukesová, A. &amp; Elster, J. (2013) Molecular and morphological criteria for revision of the genus <em>Microcoleus</em> (Oscillatoriales, Cyanobacteria). <em>Journal of Phycology</em> 49: 1167–1180.</p><p class="Reference">         <a href="https://doi.org/10.1111/jpy.12128">https://doi.org/10.1111/jpy.12128</a></p><p class="Reference">Strunecký, O., Komárek, J. &amp; Šmarda, J. (2014) <em>Kamptonema</em> (Microcoleaceae, Cyanobacteria), a new genus derived from the polyphyletic <em>Phormidium</em> on the basis of combined molecular and cytomorphological markers. <em>Preslia</em> 86 (2): 193–208.</p><p class="Reference">Taton, A., Grubisic, S., Brambilla, E., De Wit, R. &amp; Wilmotte, A. (2003) Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxel (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. <em>Applied and Environmental Microbiology</em> 69: 5157–5169.</p><p class="Reference">         <a href="https://doi.org/10.1128/AEM.69.9.5157-5169.2003">https://doi.org/10.1128/AEM.69.9.5157-5169.2003</a></p><p class="Reference">Thompson, J.D., Higgins, D.G. &amp; Gibson, T.J. (1994) ClustalW: improving the sensibility of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix. <em>Nucleic Acids Research</em> 22: 4673–4680.</p><p class="Reference">         <a href="https://doi.org/10.1093/nar/22.22.4673">https://doi.org/10.1093/nar/22.22.4673</a></p><p class="Reference">Zheng, Y., Xu, M., Zhao, J., Bei, S. &amp; Hao, L. (2011) Effects of inoculated <em>Microcoleus vaginatus</em> on the structure and function of biological soil crusts of desert. <em>Biology and Fertility of Soils</em> 47: 473–480.</p><p class="Reference">         <a href="https://doi.org/10.1007/s00374-010-0521-5">https://doi.org/10.1007/s00374-010-0521-5</a></p><p class="Reference">Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. <em>Nucleic Acids Research</em> 31 (13): 3406–3415.</p><p>                <a href="https://doi.org/10.1093/nar/gkg595">https://doi.org/10.1093/nar/gkg595</a></p>