Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-27
Page range: 109-124
Abstract views: 123
PDF downloaded: 8

A new species and new records of dung-associated bolbitiaceous fungi (Bolbitiaceae, Basidiomycota) from Uruguay

Sección Micología, Facultad de Ciencias, Iguá 4225, 11400, Universidad de la República, Montevideo, Uruguay
Innomy Biotech, Astondo Bidea 612, 48160, Derio, Basque Country. Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC)
Departamento de Química Orgánica, Facultad de Química, Av General Flores 2124, 11800, Universidad de la República, Montevideo, Uruguay
Departamento de Química Orgánica, Facultad de Química, Av General Flores 2124, 11800, Universidad de la República, Montevideo, Uruguay
Departamento de Química Orgánica, Facultad de Química, Av General Flores 2124, 11800, Universidad de la República, Montevideo, Uruguay
Sección Micología, Facultad de Ciencias, Iguá 4225, 11400, Universidad de la República, Montevideo, Uruguay
Conocybe Coprophilous ITS Pholiotina Fungi

Abstract

Coprophilous basidiomycetous fungi constitute a distinct ecological group, essential for the recycling of cellulose and other polymers digested by herbivores, and exhibiting adaptations such as thick-walled basidiospores. The family Bolbitiaceae, including the genera Pholiotina, Conocybe and Bolbitius, is well-represented on animal dung. Nonetheless, the coprophilous fungal diversity of Uruguay remains largely unexplored. This study aims to expand the knowledge of Uruguayan coprophilous fungi through the analysis of basidiomes collected from horse and cow dung samples, and using morphological, chemical and multilocus phylogenetic analyses (including ITS, LSU and Tef1-α regions). We recorded and characterized Pholiotina coprophila and Conocybe rufostipes for the first time in Uruguay and also identified and described a new species: Conocybe pruinosa sp. nov. Based on previous reports for related species, we searched for psychoactive tryptamines, but none of the samples in this study showed detectable concentrations of psilocybin or psilocin. Interestingly, in all cases, the clades consisted of sequences from Asia, Europe, North America and now Uruguay, which may correlate with the introduction of bovine cattle from these regions into the country.

References

  1. Amandeep, K., Atri, N.S. & Munruchi, K. (2015) Diversity of species of the genus Conocybe (Bolbitiaceae, Agaricales) collected on dung from Punjab, India. Mycosphere 6 (1): 19–42. https://doi.org/10.5943/mycosphere/6/1/4
  2. Arnolds, E. & Hausknecht, A. (2003) Notulae ad Floram agaricinam neerlandicam—XLI. Conocybe and Pholiotina. Persoonia-Molecular Phylogeny and Evolution of Fungi 18 (2): 239–252.
  3. Beug, M.W. & Bigwood, J. (1982) Psilocybin and psilocin levels in twenty species from seven genera of wild mushrooms in the Pacific Northwest, USA. Journal of ethnopharmacology 5 (3): 271–285.
  4. Bradshaw, A.J., Backman, T.A., Ramírez-Cruz, V., Forrister, D.L., Winter, J.M., Guzmán-Dávalos, L., Furci, G., Stamets, P. & Dentinger, B.T. (2022) DNA authentication and chemical analysis of Psilocybe mushrooms reveal widespread misdeterminations in Fungaria and inconsistencies in metabolites. Applied and Environmental Microbiology 88 (24): 1498–1522. https://doi.org/10.1128/aem.01498-22
  5. Christiansen, A.L., Rasmussen, K.E. & Høiland, K. (1984) Detection of psilocybin and psilocin in Norwegian species of Pluteus and Conocybe. Planta Medica 50 (4): 341–343.
  6. Cruz, G., Bresciano, D., Gazzano, I. & Rivas, M. (2008) Natural grasslands of Uruguay: Alternatives for its conservation. Applying Ecological Knowledge to Landuse Decisions, pp. 151.
  7. Doyle, J.J. & Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical bulletin 19: 11–15.
  8. El Akil, M., Touhami, A.O., Benkirane, R. & Douira, A. (2013) Deux nouvelles espèces de Basidiomycètes pour la flore fongique du Maroc: Conocybe singeriana Hausknecht 1996 et Conocybe fuscimarginata (Murr.) Watling 1969. International Journal of Biological and Chemical Sciences 7 (4): 1729–1734. https://doi.org/10.4314/ijbcs.v7i4.28
  9. Fayod, V. (1889) Prodrome d’une histoire naturelle des Agaricinés. Annales de la Société Botanique 7 (9): 181–411.
  10. Felippone, F. (1928) Contribution a la flore mycologique de l’Uruguay. Annales des Cryptogames Exotiques 1: 338–348.
  11. Fries, E.M. (1838) Epicrisis systematis mycologici, seu Synopsis Hymenomycetum. Uppsala: Typographia Academica 14: 610.
  12. Gazzano, S. (1996) Notas sobre Basidiomycetes xilófilos del Uruguay. VII. Nuevos registros de Aphyllophorales resupinados (Corticiaceae y Polyporaceae). Comunicaciones Botánicas del Museo de Historia Natural de Montevideo 6 (106): 1–8.
  13. González, A.R.M., Navas González, F.J., Crudeli, G.Á., Delgado Bermejo, J.V., Camacho Vallejo, M.E. & Quirino, C.R. (2022) Process of Introduction of Australian Braford Cattle to South America: Configuration of Population Structure and Genetic Diversity Evolution. Animals 12 (3): 275. https://doi.org/10.3390/ani12030275
  14. Gotvaldová, K., Hájková, K., Borovička, J., Jurok, R., Cihlářová, P. & Kuchař, M. (2021) Stability of psilocybin and its four analogs in the biomass of the psychotropic mushroom Psilocybe cubensis. Drug testing and analysis 13 (2): 439–446. https://doi.org/10.1002/dta.2950
  15. Halbwachs, H. & Bässler, C. (2020) No bull: Dung-dwelling mushrooms show reproductive trait syndromes different from their non-coprophilous allies. Mycological Progress 19 (8): 817–824. https://doi.org/10.1007/s11557-020-01604-5
  16. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic acids symposium series 41 (41): 95–98.
  17. Hallen, H.E., Watling, R. & Adams, G.C. (2003) Taxonomy and toxicity of Conocybe lactea and related species. Mycological research 107 (8): 969–979. https://doi.org/10.1017/S0953756203008190
  18. Hatfield, G.M. & Valdes, L.J. (1978) The occurrence of psilocybin in Gymnopilus species. Lloydia 41 (2): 140–144.
  19. Hausknecht, A. (1996) Beitrage zur kenntnis der Bolbitiaceae 3. Europaische Conocybe-arten mit wurzelndem oder tief im substrat eingesenktem stiel. Osterr Z Pilzk 5: 161–202.
  20. Hausknecht, A. (1998) Beitrage zur Kenntnis der Bolbitiaceae 4. Die Sektion Candidae und andere hellhutige Arten der Gattung Conocybe. Osterreich Zeitschrift fur Pilzkunde 7: 91–121.
  21. Hausknecht, A. (1999) Revision von Velenovskýs Galera-Arten, die den Gattungen Conocybe und Pholiotina angehören. Czech Mycology 51 (1): 41–70.
  22. Hausknecht, A. & Enderle, M. (1992) Conocybe-Pholiotina-Studien III, drei neue Conocybe-arten aus Italien. Zeitschrift für Mykologie 58: 197–204.
  23. Hausknecht, A. & Krisai-Greilhuber, I. (1997) Some rare Agaricales with brown or darker spores. Fungi non Delineati II, 1–32. Libreria Mykoflora, Alassio.
  24. Hausknecht, A. & Krisai-Greilhuber, I. (2004) Type studies in North American species of Bolbitiaceae belonging to the genera Conocybe and Pholiotina. Österr Z Pilzk 13: 153–235.
  25. Hausknecht, A., Vauras, J., Kytövuori, I. & Ohenoja, E. (2005) Die Gattung Conocybe in Finnland. Karstenia 45: 1–32.
  26. Hausknecht, A. & Krisai-Greilhuber, I. (2006) Infrageneric division of the genus Conocybe-a classical approach. Österreichische Zeitschrift für Pilzkunde 15: 187–212.
  27. Hausknecht, A. & Vesterholt, J. (2008) Pholiotina Fayod. Funga Nordica. Agaricoid, boletoid and cyphelloid genera 651–657.
  28. Hausknecht, A., Kalamees, K., Knudsen, H. & Mukhin, V. (2009) The genera Conocybe and Pholiotina (Agaricomycotina, Bolbitiaceae) in temperate Asia. Folia Cryptogamica Estonica 45: 23–47.
  29. Heim, R. (1957) Notes préliminaires sur les agarics hallucinogénes du Mexique. Laboratoire de cryptogamie du Museum national d’histoire naturelle. Revue de Mycologie 22: 197–198.
  30. Hoang, D.T., Chernomor, O. & Von Haeseler, A. (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular biology and evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281
  31. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods 14 (6): 587–589. https://doi.org/10.1038/nmeth.4285
  32. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108
  33. Kornerup, A. & Wanscher, J.H. (1978) Methuen handbook of colour. Third Edition. Eyre Methuen, London, 252 pp.
  34. Kühner, R. (1926) Contribution à l’étude des Hyménomycètes et spécialement des Agaricacés. Impr. Jouve et cie. Botaniste. 224 pp.
  35. Kühner, R. (1935) Le genre Galera (Fries) Quélet. Encyclopédie Mycologique 7: 1–240
  36. Kuraku, S., Zmasek, C.M., Nishimura, O. & Katoh, K. (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic acids research 41 (W1): W22–W28. https://doi.org/10.1093/nar/gkt389
  37. Kusano, G., Koike, Y., Inoue, H. & Nozoe, S. (1986) The constituents of Gymnopilus spectabilis. Chemical and pharmaceutical bulletin 34 (8): 3465–3470.
  38. Lupo, S., Tiscornia, S. & Bettucci, L. (2001) Endophytic fungi from flowers, capsules and seeds of Eucalyptus globulus. Revista Iberoamericana de Micología 18: 33–36.
  39. Martinez, S. (2014) Comunidades de Basidiomycetes lignícolas en bosques nativos de Uruguay y factores que condicionan su composición. Doctorado en Ciencias Biológicas. Montevideo, Uruguay. PEDECIBA. Available from: https://hdl.handle.net/20.500.12008/9092 (accessed 3 July 2024).
  40. Meusers, M. (1996) Bestimmungsschlüssel für Europäische Arten der Gattungen Conocybe und Pholiotina. Österreiche Zeitschrift für Pilzkunde 5: 245–272.
  41. Melo, R.F.R., Chikowski, R.S., Miller, A.N. & Maia, L.C. (2016) Coprophilous Agaricales (Agaricomycetes, Basidiomycota) from Brazil. Phytotaxa 266 (1): 1–14. https://doi.org/10.11646/phytotaxa.266.1.1
  42. Meyer, M. & Slot, J. (2023) The Evolution and Ecology of Psilocybin in Nature. Fungal Genetics and Biology 167: 103812. https://doi.org/10.1016/j.fgb.2023.103812
  43. Murrill, W.A. (1943) Additions to Florida fungi. Mycologia 35 (5): 529–537.
  44. Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300
  45. Niveiro, N. & Albertó, E. (2012) Checklist of the argentine Agaricales 3. Bolbitiaceae and Crepidotaceae. Mycotaxon 120: 505.
  46. Ola’h, G.M. (1969) A taxonomical and physiological study of the genus Panaeolus with Latin descriptions of the new species. Revue de mycologie 33 (4): 284–290.
  47. Primo, A.T. (1992) El ganado bovino ibérico en las Américas: 500 años después. Archivos de zootecnia 41 (154): 13.
  48. Prydiuk, M.P. (2014) Some rare and interesting Conocybe found in Vyzhnytsia National Nature Park (Ukrainian Carpathians). Mycobiota 4: 1–24. https://doi.org/10.12664/mycobiota.2014.04.01
  49. Quélet, L. (1872) Les Champignons du Jura et des Vosges. Mémoires de la Société d’Émulation de Montbéliard 2 (5): 43–332.
  50. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic biology 67 (5): 901–904. https://doi.org/10.1093/sysbio/syy032
  51. Rehner, S.A. & Buckley, E. (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97 (1): 84–98. https://doi.org/10.3852/mycologia.97.1.84
  52. Reynolds, H.T., Vijayakumar, V., Gluck-Thaler, E., Korotkin, H.B., Matheny, P.B. & Slot, J.C. (2018) Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evolution letters 2 (2): 88–101. https://doi.org/10.1002/evl3.42
  53. Rodríguez, L., López, A., Moyna, G., Seoane, G.A., Davyt, D., Vázquez, Á., Gonzalo Hernández & Carrera, I. (2022) New insights into the chemical composition of ayahuasca. ACS omega 7 (14): 12307–12317. https://doi.org/10.1021/acsomega.2c00795
  54. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61 (3): 539–542.
  55. Saito, K., Toyo’oka, T., Kato, M., Fukushima, T., Shirota, O. & Goda, Y. (2005) Determination of psilocybin in hallucinogenic mushrooms by reversed-phase liquid chromatography with fluorescence detection. Talanta 66 (3): 562–568. https://doi.org/10.1016/j.talanta.2004.11.031
  56. Santana, Jr. M.L., Pereira, R.J., Bignardi, A.B., Ayres, D.R., Menezes, G.D., Silva, L.O., Leroy, G., Machado, C.H., Josahkian, L.A. & Albuquerque, L.G. (2016) Structure and genetic diversity of Brazilian Zebu cattle breeds assessed by pedigree analysis. Livestock Science 187: 6–15. https://doi.org/10.1016/j.livsci.2016.02.002
  57. Schultes, R.E. & Hofmann, A. (1979) Plants of the gods. Origin of hallucinogenic use. McGraw-hill Book Company, New York.
  58. Singer, R. (1948) Diagnoses fungorum novorum Agaricalium. Sydowia 2: 26–42.
  59. Singer, R. (1950a) Naucoria Fries y blizkiye rody v SSSR. Trudy Botanicheskogo Instituta im. V.L. Komarova 6: 402–498
  60. Singer, R. (1950b) New and interesting species of Basidiomycetes III. Sydowia 4: 1–6.
  61. Singer, R. (1953) Four years of mycological work in southern South America. Mycologia 45 (6): 865–891.
  62. Singer, R. & Hausknecht, A. (1988) Notes on Conocybe (Bolbitiaceae). Plant systematics and evolution 159: 107–121.
  63. Smith, A.H. (1949) Mushrooms in their natural habitats. Hafner Publishing Company, 626 pp.
  64. Song, H.B. & Bau, T. (2023) Conocybe Section Pilosellae in China: Reconciliation of Taxonomy and Phylogeny Reveals Seven New Species and a New Record. Journal of Fungi 9 (9): 924. https://doi.org/10.3390/jof9090924
  65. Tóth, A., Hausknecht, A., Krisai-Greilhuber, I., Papp, T., Vágvölgyi, C. & Nagy, L.G. (2013) Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family Bolbitiaceae. PLoS One 8 (2). https://doi.org/10.1371/journal.pone.0056143
  66. Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of bacteriology 172 (8): 4238–4246.
  67. Watling, R. (1964) Notes Royal botanic Garden 25: 311.
  68. Watling, R. (1983) Observations on the Bolbitiaceae–23. Interesting Danish members of the family. Nordic Journal of Botany 3 (2): 261–268.
  69. Watling, R. (1985) Icelandic species of Bolbitiaceae: observations on the Bolbitiaceae 25. Acta Botanica Islandica.
  70. White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18 (1): 315–322.
  71. Wright, J.E. & Albertó, E. (2002) Hongos. Guía de la región Pampeana. I. Hongos con laminillas. LOLA.