Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-17
Page range: 1-12
Abstract views: 74
PDF downloaded: 3

Taxonomic identification of Nigerian Terminalia superba and Terminalia ivorensis Combretaceae) using AFLP molecular markers

Department of Forest Production and Products, University of Ibadan
Department of Forest Production and Products, University of Ibadan
Department of Orchard Plant Genetics and Biotechnology, Lithuanian Research Centre for Agriculture and Forestry (Babtai, Lithuania)
Department of Orchard Plant Genetics and Biotechnology, Lithuanian Research Centre for Agriculture and Forestry (Babtai, Lithuania)
Department of Orchard Plant Genetics and Biotechnology, Lithuanian Research Centre for Agriculture and Forestry (Babtai, Lithuania)
Africa Combreteae Genetic diversity molecular markers polymorphism taxonomy Eudicots

Abstract

Terminalia superba and T. ivorensis are difficult to identify with morphological markers. Molecular characterization is very effective to correct the delimitation of timber species, especially when the discriminatory power of morphological markers is weak. In this study, four amplified fragment length polymorphism (AFLP) marker combinations were used to determine the taxonomic relationship among a total of 33 accessions of the genus Terminalia, consisting of two species, Terminalia ivorensis (12 accessions) and T. superba (21). The primer combinations produced a total of 740 fragments out of which 619 (83.6%) were polymorphic. Among all the primer combinations used, E-ACT/M-CTC was the most informative, which generated 11 unique markers for clear identification of the two species. The average polymorphic information content (PIC) ranged from 0.24 (E-ACT/M-CAT) to 0.28 (E-ACT/M-CTC) while the resolving power (RP) varied from 40.73 (E-AAC/M-CTA) to 63.76 (E-ACT/M-CTC). The genetic difference between the two species was significant (PhiPT = 0.610, p<0.001). All 33 accessions were delimited by both the UPGMA cluster and principal component analysis. Based on the results, it was concluded that E-ACT/M-CTC is the best among the marker combinations used for molecular study of the two tree species and used significantly to distinguish them. STRUCTURE analysis identified two accessions of Terminalia superba with alleles derived from T. ivorensis as well as revealed five putative hybrid accessions, which requires further genetic investigation to substantiate the finding.

References

  1. Ansah, C., Moomin, A. & Boadu, K.M. (2016) Terminalia ivorensis A. Chev. Ethanolic Stem Bark Extract Protects Against Gentamicin-Induced Renal and Hepatic Damage in Rats. Journal of Applied Pharmaceutical Science 6 (4): 175–182. https://doi.org/10.7324/JAPS.2016.60426
  2. Arowosoge, G.E. & Tee, N.T. (2010) Evaluation of consumers’ choice of wooden dining furniture in Southwestern Nigeria: A market strategy for furniture manufacturers and marketers. African Journal of Biotechnology 9 (21): 3109–3115. https://doi.org/10.5897/AJB2010.000-3152
  3. Arowosoge, G.E. (2015) Survey of wood species utilized for roofing in south-western Nigeria. International Journal of Applied Science and Technology 5 (4): 94–101.
  4. Borokini, T.I., Okere, A.U., Giwa, A.O., Daramola, B.O. & Odofin, W.T. (2010) Biodiversity and conservation of plant genetic resources in the Field Genebank of the National Centre for Genetic Resources and Biotechnology, Ibadan, Nigeria. International Journal of Biodiversity and Conservation 2 (3): 37–50.
  5. Cai, Y.Z., Sun, M. & Corke, H. (2003) Antioxidant activity of betalains from plants of the Amaranthaceae. Journal of Agricultural and Food Chemistry 51 (8): 2288–2294. https://doi.org/10.1021/jf030045u
  6. Cao, C.P., Gailing, O., Siregar, I.Z., Siregar, U.J. & Finkeldey, R. (2009) Genetic variation in nine Shorea species (Dipterocarpaceae) in Indonesia revealed by AFLPs. Tree Genetics & Genomes 5: 407–420. https://doi.org/10.1007/s11295-008-0195-4
  7. Cheng, H.Y., Lin, T.C., Yu, K.H., Yang, C.M. & Lin, C.C. (2003) Antioxidant and free radical scavenging activities of Terminalia chebula. Biological and Pharmaceutical Bulletin 26: 1331–1335. https://doi.org/10.1248/bpb.26.1331
  8. Chevalier, A. (1909) Les végétaux utiles de l’Afrique tropicale française, Première étude sur les bois de la Côte d’Ivoire: études scientifiques et agronomiques, vol. 5. A. Challamel, Paris, 314 pp.
  9. De Candolle, A.P. (1828) Combretaceae. In: Prodromus systematis naturalis regni vegetabili, v. 3. pp. 9–24.
  10. Demenou, B.B., Migliore, J., Tosso, F., Kaymak, E. & Hardy, O.J. (2013) Development and characterization of microsatellite markers in the African deciduous tree Terminalia superba (Combretaceae). Applications in Plant Sciences 3 (12): 1–4. https://doi.org/10.3732/apps.1500070
  11. De-Ridder, M., Trouet, V., den-Bulcke, J.V., Hubau, W., Acker, J.V. & Beeckman, H. (2013) A tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa. Trees 27: 1225–1238. https://doi.org/10.1007/s00468-013-0871-3
  12. Doyle, J.J. & Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12 (1): 13–15.
  13. Earl, D.A. & vonHoldt, B.M. (2012) STRUCTURE HARVESTER: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conservation Genetics Resources 4 (2): 359–361.
  14. Engler, A. & Diels, L. (1899) IV. Combretaceae excl. Combretum. In: Engler, A. (Ed.) Monographieen Afrikanischer Pflanzen-Familien und –Gattungen, vol. 4. Wilhelm Engelmann, Leipzig, 44 pp. https://doi.org/10.5962/bhl.title.53505
  15. Esfahani, S.T., Shiran, B. & Balali, G. (2009) AFLP markers for the assessment of genetic diversity in European and North American potato varieties cultivated in Iran. Crop Breeding and Applied Biotechnology 9: 75–86.
  16. Evanno, G., Regnaut, S. & Goudet, J. (2005) “Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study.” Molecular Ecology 14 (8): 2611–2620.
  17. Falemara, B.C., Olufemi, B. & Owoyemi, J.M. (2019) Physical properties of ten selected indigenous wood species in Akure, Ondo State, Nigeria. Scientific Journal of Association of Women in Forestry and Environment 4: 16–23.
  18. FAO (2018) The State of the World’s Forests 2018 - Forest pathways to sustainable development. Rome. Available from: http://www.fao.org/3/ca0188en/ca0188en.pdf (accessed 25 July 2018)
  19. Frercks, B., Stanys, V., Siksnianiene, J.B., Stepulaitiene, I., Gelvonauskiene, D., Staniene, G., Rugienius, R. & Siksnianas, T. (2014) Efficiency of AFLP marker attributes in the genetic analysis of sweet cherry cultivars. Journal of Food, Agriculture & Environment 12 (1): 122–127.
  20. Gaertner, C.F. (1805) Supplementum Carpologicae, vol. 1. Leipzig, C.F.E. Richter, pp. 1–128.
  21. Gaertner, J. (1791) De Fructibus et Seminibus Plantarum, vol. 2. Stutgardiae: Sumtibus Auctoris, Typis Guilielmi Henrici Schrammii, 520 pp. https://doi.org/10.5962/bhl.title.53838
  22. Gere, J., Yessoufou, K., Barnabas, H., Daru, B.H., Maurin, O. & Der-Bank, M.V. (2015) African Continent a Likely Origin of Family Combretaceae (Myrtales). A Biogeographical View. Annual Research & Review in Biology 8 (5): 1–20. https://doi.org/10.9734/ARRB/2015/17476
  23. Gupta, P.K. & Varshney, R.K. (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113: 163–185. https://doi.org/10.1023/A:1003910819967
  24. Hutchinson, J., Dalziel, J.M., Keay, R.W.J. & Hepper, N. (2014) Flora of West Tropical Africa. Millbank, London, 2300 pp.
  25. Intharuksa, A., Ando, H., Miyake, K., Sirisa-Ard, P., Mikage, M. & Sasaki, Y. (2016) Molecular Analysis of Terminalia spp. Distributed in Thailand and Authentication of Crude Drugs from Terminalia Plants. Biological and Pharmaceutical Bulletin 39: 492–501. https://doi.org/10.1248/bpb.b15-00673
  26. Kamtchouing, P., Kahpui, S.M., Dzeufiet, P.D., Tedong, L., Asongalem, E.A. & Dimo, T. (2006) Anti-diabetic activity of methanol/methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. Journal of Ethnopharmacology 104: 306–309. https://doi.org/10.1016/j.jep.2005.08.075
  27. Keay, R.W.J. (1989) Trees of Nigeria. Clarendon Press, Oxford, UK, 337 pp.
  28. lakes in southwest, Nigeria. FUOYE Journal of Pure and Applied Sciences 4 (1): 21–24.
  29. Lapido, D.O., Britwum, S.P.K., Tchoundjeu, Z., Oni, O. & Leakey, R.R.B. (1994) Genetic improvement of West African tree species: past and present. In: Leakey, R.R.B. & Newton, A.C. (Eds.) Tropical trees: the potential for domestication and the rebuilding of forest resources. London, HMSO, pp. 239–248.
  30. Laurentin, H. & Karlovsky, P. (2007) AFLP fingerprinting of sesame (Sesamum indicum L.) cultivars: identification, genetic relationship and comparison of AFLP informativeness parameters. Genetic Resources and Crop Evolution 54: 1437–1446. https://doi.org/10.1007/s10722-006-9128-y
  31. Lawes, M.J, Eerley, H.A.C, Shackleton, C.M. & Geach, B.G.S. (2004) Policy, People and Practice. In: Lawes, M.J., Eeley, H.A.C., Shackleton, C.M. & Geach, B.G.S. (Eds.) Indigenous forests and woodlands in South Africa. University of Kwazulu-Natal Press, Pietermaritzburg, pp. 227–273.
  32. Lin, J.J., Kuo, J., Ma, J., Saunders, J.A., Beard, H.S., MacDonald, M.H., Kenworthy, W., Ude, G.N. & Matthews, B.F. (1996) Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques. Plant Molecular Biology Reporter 14 (2): 156–169.
  33. Linnaeus, C. (1753) Species plantarum: exhibentes plantas rite cognitas ad genera relatas, cum diferentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Berlin: Junk, 570 pp.
  34. Linnaeus, C. (1767) Systema naturae: per regna tria natura, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Holmiae: Impensis direct. Laurentii Salvii, 842 pp.
  35. Masoko, P. & Eloff, J.N. (2007) Screening of twenty-four South African Combretum and six Terminalia species (Combretaceae) for antioxidant activities. African Journal of Traditional, Complementary and Alternative Medicines 4 (2): 231–239. https://doi.org/10.4314/ajtcam.v4i2.31213
  36. Maurin, O., Chase, M.W., Jordaan, M. & Van-der-Bank, M. (2010) Phylogenetic relationships of Combretaceae inferred from nuclear and plastid DNA sequence data: implications for generic classification. Botanical Journal of the Linnean Society 162: 453–476. https://doi.org/10.1111/j.1095-8339.2010.01027.x
  37. Mishra, P., Kumar, A., Nagireddy, A., Shukla, A.K. & Sundaresan, V. (2017) Evaluation of single and multilocus DNA barcodes towards species delineation in complex tree genus Terminalia. PLoS ONE 12 (8): e0182836. https://doi.org/10.1371/ journal.pone.0182836
  38. Mosolygó-L, A., Sramkó, G., Barabás, S., Czeglédi, L., Jávor, A., Attila, M.V. & Surányi, G. (2016) Molecular genetic evidence for allotetraploid hybrid speciation in the genus Crocus L. (Iridaceae). Phytotaxa 258 (2): 121–136. http://dx.doi.org/10.11646/phytotaxa.258.2.2
  39. Mueller, U.G. & Wolfenbarger, L.L. (1999) AFLP genotyping and fingerprinting. Trends in Ecology and Evolution 14: 389–394. http://dx.doi.org/10.1016/S0169-5347(99)01659-6
  40. Muhammad, A.N., Muhammad, A.N., Muhammad, Q.S., Yıldız, D., Gonul, C., Mehtap, Y., Rüştü, H., Fiaz, A., Ahmad, A., Nitin, L., Hakan, O., Gyuhwa, C. & Faheem, S.B. (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment 32 (2): 261–285. https://doi.org/10.1080/13102818.2017.1400401
  41. Nei, M. & Li, W.H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76 (10): 5269–5273.
  42. Nithaniyal, S. & Parani, M. (2016) Evaluation of chloroplast and nuclear DNA barcodes for species identification in Terminalia L. Biochemical Systematics and Ecology 68: 223–229. https://doi.org/10.1016/j.bse.2016.08.001
  43. Onefeli, A.O. & Adesoye, P.O. (2014) Early Growth Assessment of Selected Exotic and Indigenous Tree Species in Nigeria. South-east European Forestry 5 (1): 45–51. https://doi.org/10.15177/seefor.14-06
  44. Onefeli, A.O. & Stanys, V. (2019) Phylogenetic study of African Combretaceae R. Br. Based on rbcL Sequence. Baltic Forestry 25 (2): 170–177. https://doi.org/10.46490/vol25iss2pp170
  45. Onefeli, A.O. & Oladele-Akin, O.M. (2020) The Genus Sterculia Linn. In Nigeria: Taxonomic Significance of Morphological and Foliar Epidermal Characters. In: Proceedings of the 3rd Commonwealth Forestry Association (CFA) Conference, Nigeria Chapter. pp. 93–103.
  46. Onefeli, A.O. & Lekan, P.K. (2021) Taxonomic Value of Leaf Epidermal Markers in Discriminating Some Medicinal Tree Species of Apocynaceae Juss. Environmental Sciences Proceedings 3 (1): 91. https://doi.org/10.3390/IECF2020-07982
  47. Onefeli, A.O. (2021) Effectiveness of DNA Barcoding in Discriminating Daniellia ogea (Harms) Rolfe Ex Holland and Daniellia oliveri (Rolfe) Hutch. & amp; Dalziel. Trees, Forests and People 4: 100067. https://doi.org/10.1016/j.tfp.2021.100067
  48. Oyewumi, J.O. Omoniyi, I.T. & Agbon, A.O. (2019) Comparative analysis of morphormetrics and meristics features of Sarothrodon Galilaeus from three man made Lakes in Southwest, Nigeria. FUOYE Journal of Pure and Applied Sciences 4 (1): 21–24.
  49. Parkinson, C.E. (1936) Indian Terminalias of section Pentaptera. Indian Forest Records 1: 1–26.
  50. Peakall, R. & Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
  51. Prevost, A. & Wilkinson, M.J. (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics 98: 107–112. https://doi.org/10.1007/s001220051046
  52. Pritchard, J.K., Stephens, M. & Donnelly, P. (2000) Inference of population structure using multilocus genotype data. Genetics 155 (2): 945–959.
  53. Retzius, A.J. (1789) Observationes Botanicae 5. Siegfried Lebrecht Crusium, Leipzig, 286 pp.
  54. Rocha, C.M.L., Gabriel Ricardo Vellicce, G.R., García, M.G., Pardo, E.M., Racedo, J., Perera, M.F., de-Lucía, A., Gilli, J., Bogado, N., Bonnecarrère, V., German, S., Marcelino, F., Ledesma, F., Reznikov, S., Ploper, L.D., Welin, B. & Castagnaro, A.P. (2015) Use of AFLP markers to estimate molecular diversity of Phakopsora pachyrhizi. Electronic Journal of Biotechnology 18: 439–444. https://doi.org/10.1016/j.ejbt.2015.06.007
  55. Roxburgh, W. (1805) Plants of the Coast of Coromandel 2 (4). W. Bulmer and Co., London, pp. 41–56. https://doi.org/10.5962/bhl.title.467
  56. Schmidt, L. (2002) Guide to handling of Tropical and Subtropical forest seeds Dernmark: DANIDA Forest Seed Centre, Borch Tyrk A/S, 532 pp.
  57. Shete, S., Tiwari, H. & Elston, R.C. (2000) On estimating the heterozygosity and polymorphism information content value. Theoretical Population Biology 57: 265–271. https://doi.org/10.1006/tpbi.2000.1452
  58. Stace, C.A. (2007) Combretaceae. In: Kubitzki, K. (ed.) Flowering plants. Eudicots. Vol. 7. Hamburg, Springer, 509 pp. [pp. 67–82]
  59. Stanys, V., Frercks, B., Siksnianiene, J.B., Stepulaitiene, I., Gelvonauskiene, D., Staniene, G. & Bobinas, C. (2012) Identification of sweet cherry (Prunus avium L.) cultivars using AFLP and SSR markers. Agriculture 99 (4): 437–444.
  60. Tatikonda, L., Wani, S.P., Kannan, S., Beerelli, N., Sreedevi, T.K., Hoisington, D.A., Devi, P. & Varshney, R.K. (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Science 176: 505–513. https://doi.org/10.1016/j.plantsci.2009.01.006
  61. Van de Peer, Y.V. & Wachter, R.D. (1994) Treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Computer Applications Biosciences 10 (5): 569–570. https://doi.org/10.1093/bioinformatics/10.5.569
  62. Varshney, R.K., Chabane, K., Hendre, P.S., Aggarwal, R.K. & Graner, A. (2007) Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science 173: 638–649. https://doi.org/10.1016/j.plantsci.2007.08.010
  63. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T.V., Hornes, M., Friters, M., Pot, J. & Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23 (21): 4407–4414. https://doi.org/10.1093/nar/23.21.4407
  64. Wight, R. & Arnott, G.A.W. (1834) Prodromus Florae Peninsulae Indiae Orientalis, vol. 1. Parbury, Allen & Co., London, 480 pp.
  65. Zhang, Z., van-Parijs, F.R.D. & Xiao, B. (2014) The status of AFLP in the genomics era and a pipeline for converting AFLPs into single-locus markers. Molecular Breeding 34: 1245–1260. https://doi.org/10.1007/s11032-014-0113-4