
Phytotaxa  367 (3):  201–218
http://www.mapress.com/j/pt/
Copyright © 2018 Magnolia Press Article PHYTOTAXA

ISSN 1179-3155 (print edition)

ISSN 1179-3163 (online edition)

Accepted by Elena Patova: 27 Jun. 2018; published: 6 Sept. 2018

https://doi.org/10.11646/phytotaxa.367.3.1

201
Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0

Chroakolemma gen. nov. (Leptolyngbyaceae, Cyanobacteria) from soil biocrusts in 
the semi-desert Central Region of Mexico

ITZEL BECERRA-ABSALÓN1, JEFFREY R. JOHANSEN3,4, M. ANGELES MUÑOZ-MARTÍN2 & GUSTAVO 
MONTEJANO1

1Departamento de Biología Comparada, Universidad Nacional Autónoma de México (UNAM), Colonia Coyoacán, Código Postal 
04451070474, P.O. Box 70–474, Ciudad de México, México; email: iba@ciencias.unam.mx, phone: 52–5556224837.
2Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C Darwin no. 2., 28049 Madrid, Spain; 
email: mangeles.munnoz@uam.es. 
3Department of Biology, John Carroll University, 1 John Carroll Blvd., University Heights, OH 44118. USA; email: johansen@jcu.edu, 
phone: 1–216–835–4352; fax: 1–216–397–4482.
4Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech 
Republic; email: johansen@jcu.edu, phone: 1–216–835–4352, fax: 1–216–397–4482.

Abstract

Twelve strains of Leptolyngbya-like filaments were isolated from biological soil crust samples from two localities in the 
Central Region of Mexico. The strains were morphologically distinguished from most Synechococcalean species by the 
obligate presence of a blackish sheath. Phylogenetic analysis based on 16S rRNA gene sequence placed all strains into a 
strongly supported single clade sister to Scytolyngbya. The genetic identity between our strains and all other Synechococcales, 
including Scytolyngbya, was less than 95%, and the strains were further distinguished by morphology and terrestrial ecology. 
The conserved domains of the 16S-23S ITS region had secondary structures distinct from all other closely related genera, 
which included Scytolyngbya, Stenomitos, Chamaethrix, and Pantanalinema. Based on the combination of morphological, 
molecular, and ecological evidence, we here describe two species: Chroakolemma opaca gen. et sp. nov. and C. pellucida 
gen. et sp. nov. Based on the ability to form blackish sheaths, these two species are morphologically similar to Leptolyngbya 
edaphica, Chamaethrix vaginata and Trichocoleus badius. The latter two species have been sequenced and are phylogenetically 
distant from Chroakolemma. Leptolyngbya edaphica is a soil species described from Russia and shares other morphological 
similarities with Chroakolemma, including wide sheaths, coiled filaments, pale blue-green trichomes, and constricted cross-
walls. We consider these characteristics diagnostic of Chroakolemma, and accordingly propose Chroakolemma edaphica 
comb. nov. 
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Introduction

Recently, cyanobacterial classification has undergone rapid revision based upon use of a polyphasic approach to 
define new taxa and molecular characterization of classical taxa (Komárek et al. 2014, Mareš 2017). One of the 
most problematic groups has been the Leptolyngbyaceae in the Synechococcales, as the genera in this family are 
morphologically simple and consequently very similar (Komárek 2017). Numerous new genera have been recognized 
based primarily on molecular phylogenetic evidence with supporting ecological and morphological characterization. 
These genera include Halomicronema Abed, Garcia-Pichel & Hernández-Mariné (2002: 368), Phormidesmis 
Turicchia, Ventura, Komárková & Komárek (2009: 179), Nodosilinea Perkerson & Casamatta (2011: 1404), 
Plectolyngbya Taton, Wilmotte, Šmarda, Elster & Komárek (2011: 184), Haloleptolyngbya Dadheech, Mahmoud, 
Kotut & Krienitz (2012:273), Oculatella Billi & Albertano in Zammit et al. (2012: 351), Neosynechococcus Dvořák, 
Hindák, Hašler, & Hindáková in Dvořák et al. (2014: 26), Alkalinema Vaz, Genuário, Andreote, Malone, Sant’Anna, 
Barbiero & Fiore (2015: 302), Pantanalinema Vaz, Genuário, Andreote, Malone, Sant’Anna, Barbiero & Fiore (2015: 
301), Scytolyngbya Song & Li (2015: 74), Pinocchia Dvořák, Jahodářová & Hašler in Dvořák et al. (2015:115), 
Limnolyngbya Li & Li (2016:480), Thermoleptolyngbya Sciuto & Moro (2016:33), Kovacikia Miscoe, Pietrasiak & 
Johansen in Miscoe et al. (2016:83), Stenomitos Miscoe & Johansen in Miscoe et al. (2016:84), Chamaethrix Dvořák, 
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Hašler, Pitelková, Tabáková, Casamatta & Poulíčková (2017:270), Timaviella Sciuto, Moschin & Moro (2017:318), 
Elainella Jahodářová, Dvořák & Hašler in Jahodářová et al. (2017a:4), Onodrimia Jahodářová, Dvořák & Hašler in 
Jahodářová et al. (2017b:30), Lusitaniella Brito et al. (2017: 25), Toxifilum Zimba, Huang, Foley et Linton (2017: 
190), and Myxacorys Pietrasiak & Johansen in Pietrasiak et al. (in review). 
	 The type genus of the Leptolyngbyaceae, Leptolyngbya Anagnostidis & Komárek (1988: 390), has actually 
been very problematic as it has been broadly circumscribed both morphologically and ecologically, and has few 
synapomorphies that define it. Species in the family Leptolyngbyaceae with thin trichomes (0.5 to 3.5 µm wide), no 
aerotopes, and consistent production of sheaths have been historically placed in this genus. The members of the genus 
are variable with regard to degree of constriction at the cross-walls, formation of necridia, formation of false branching, 
and end cell morphology. The type species, Leptolyngbya boryana (Gomont 1899: 36) Anagnostidis & Komárek (1988: 
390), is well-defined and a number of strains in this species have been sequenced and their morphology carefully 
characterized (Johansen et al. 2011). Many of the new genera mentioned above were first named Leptolyngbya in 
NCBI GenBank, resulting in a very polyphyletic genus (Casamatta et al. 2005, Johansen et al. 2008, 2011, Taton et 
al. 2011, Zammit et al. 2012, Osorio-Santos et al. 2014, Silva et al. 2014, Vaz et al. 2015). Only after molecular data 
showed that they were phylogenetically distinct from the clade containing the generitype were they placed in other 
genera, resulting in taxonomy that more accurately reflects evolutionary history. This group is difficult and revisionary 
work as well as α-level taxonomy still remains to be conducted.
	 This manuscript contributes to the α-level taxonomy of the Leptolyngbyaceae. We studied soil biocrust communities 
from two localities in semi-desert environments from Central México. In these biocrusts we observed filaments clearly 
belonging to the Leptolyngbyaceae in field samples, and these filaments were subsequently isolated into culture. The 
populations all possess widened and blackish sheaths, false branching, constricted crosswalls, and cells distinctly 
longer than wide, features which in combination are sufficient to propose a new genus, Chroakolemma. Additionally, 
the molecular analysis with 16S rRNA sequences and hypothetical secondary structure of ITS 16S-23S confirm the 
uniqueness of these strains.
	 Herein, we describe Chroakolemma gen. nov. for these distinctive populations, which contains three species, C. 
opaca sp. nov., C. pellucida sp. nov., and C. edaphica comb. nov.

Material and methods

Sample collection and cultures:—Chroakolemma filaments were found inhabiting soil crusts of semi-deserts from 
Central México in two localities. The first locality was near to Actopan, Hidalgo state within the Mezquital Valley 
with mean annual precipitation (MAP) of 436 mm, mean annual temperature (MAT) of 16.4°C, with soil type being 
a Feozem (Mollisol), and a xeric savanna-like scrub vegetation dominated by Prosopsis Linnaeus (1767: 68) spp. 
(Mesquite shrubs and trees) with crassiculate (fleshy stemmed) plants. The second site was around the crater lake of 
San Luis Atexcac (L.A), Puebla state, with MAP of 372 mmm, MAT of 13.9°C, soil type Feozem, and xeric vegetation 
dominated by Yucca Linnaeus (1753: 47) and other Agavoideae. These localities constitute the southern end of the 
Chihuahuan Desert and the two sites are separated by basaltic volcanic flows, mountains, and pine-oak forest growing 
at the higher elevations. We collected surface samples of biocrust in sterile plastic petri dishes 15 cm in diameter, 
which were then stored in darkness inside envelopes until processing. The samples were dried for preservation and 
deposited in the collection of Biological Crusts of the Phycological Herbarium of Science Faculty (FCME), housed in 
the Universidad Nacional Autónoma de México (UNAM) in México City. A subsample of each soil sample was broken 
up by grinding in a mortar with a pestle, and then dried crushed soil was applied directly to agar plates containing BG11 
medium (Allen 1968). When colonies began to grow, they were removed to clean agar plates and allowed to grow. In 
this way, several strains were isolated from the different samples collected, four in the locality of the Mezquital Valley 
(686, 701, 702, 708) and three for Atexcac (716, 718, 719). After checking for contaminants, uncontaminated cultures 
were transferred to liquid media to achieve sufficient biomass for DNA extraction and sequencing. Strains were grown 
in a culture room at 28°C with continuous light of 20–50 µE. The strains were cryopreserved with 15% glycerol and 
incorporated into the collection housed in the Universidad Autónoma de Madrid (UAM, Spain).
	 Morphological characterization:—Morphological variability was studied in live material. In both the natural 
populations and the cultured strains the species were analyzed based on morphological and morphometric characteristics, 
particularly filament and trichome width, sheath morphology and coloration, cell color, cell and apical cell length, 
presence of granules, and false branching.
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	 The observations were carried out on an Olympus BX 51 photomicroscope equipped with Nomarski DIC 
(differential interferential contrast) and a DP 12 digital camera, or an Olympus microscope CX 41 and DP 20 digital 
camera. We used the Sigma scan program to get the species dimensions. The characteristics of our strains were 
compared to the information in Komárek & Anagnostidis (2005), Dvořák et al. (2017), and Song et al. (2015).
	 Molecular characterization:—DNA of each strain was isolated from unialgal cultures using a combination 
of mechanical and freeze-thaw cycles for rupturing cell walls (Palinska et al. 2006). A subsample of each culture 
was pulverized with 150 ml of PowerBead solution of Kit UltraClean Microbial DNA Isolation Kit (MO-BIO Labs, 
Carlsbad, CA, USA) in a 0.5 ml Eppendorf vial. The slurry was homogenized and subsequently exposed to five freeze–
thaw cycles, alternating immersion in liquid nitrogen and heating to 60 ºC, followed by further mechanical rupture of 
the sample using a pestle. The 16S rRNA gene with 16S-23S ITS region were amplified by polymerase chain reaction 
(PCR) using primer 27 Forward (Wilmotte et al. 1993) and primer 23S reverse (Lepére et al. 2000). The amplification 
reaction volume was 25 µl and contained 1 or 2 µl DNA, 200µM dNTP, 1µg bovine serum albumin, 10 pmol of 
each primer, 1.5 mM MgCl2, 2.5 µl 10x polymerase buffer, 5 µl 5x Eppendorf Taqmaster PCR enhancer and 0.75 U 
Ultratools DNA polymerase (Biotools). The amplified products were run in a Perkin Elmer Gene Amp PCR System 
2400 Thermocycler, using the PCR cycle described by Gkelis et al. (2005). All PCR products were visualized on a 1% 
agarose gel and the amplification products were purified with Wizard® SV Gel and PCR Clean-Up System, Promega. 
The purification products were cloned onto the pGEM®-T Easy Vector plasmid of the pGEM®-T Easy Vector System 
I, Promega. The clones were isolated using Wizard® Plus SV Minipreps DNA purification System, Promega. Plasmids 
containing inserts were submitted for bidirectional sequencing using primers T7, SP6 and 684 forward (Mateo et al. 
2011) to Centro Nacional de Investigación Oncológica (CNIO) in Madrid, Spain. Fragments were assembled using 
the software PhyDE-1 v0.9971 (Müller et al. 2010). The sequences obtained were deposited in the NCBI GenBank 
database with the accession numbers: Mezquital Valley MF68583–MF685888 and Atexcac MF685889–MF685894.
	 Alignment and phylogenetic analysis:—The sequences obtained were compared with sequence information 
available in the National Center for Biotechnology Information (NCBI) database using BLAST (http://www.ncbi.nlm.
nih.gov/BLAST) and the most related sequences were selected. Additional sequences from GenBank were selected 
based on morphological classification criteria, such that sequences from several Synechococcalean families could 
be represented, including many of the recently described genera in the order. The taxa used in the 16S rRNA gene 
phylogenetic analyses included a total of 278 OTUs with Gloeobacter violaceus Rippka, J.B. Waterbury & Cohen-
Bazire (1974: 436) as outgroup. The multiple-sequence alignment was performed using ClustalW (Thompson et al. 
1994) and the alignment was later visually checked and corrected using PhyDE-1 v0.9971 (Müller et al. 2010). Percent 
identity among strains based on both the 16S rRNA gene sequence and ITS sequence were calculated using p-distance 
as derived with the SHOWDIST command in PAUP 4.0 beta version 10.
	 Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) analyses were performed 
using partial 16S rRNA gene sequences containing a maximum of 1065 characters including nucleotides and indels. 
Bayesian inference was conducted with MrBayes XSDE V3.2.6 (Ronquist et al. 2012) through the CIPRES Science 
Gateway, applying the GTR+G+I model of nucleotide substitutions. A total of 28 million generations were run. The 
BI analysis had an estimated sample size (ESS) exceeding 300 for all parameters (average ESS ranging 652–13,923), 
well above the average of 200 typically accepted as sufficient by phylogeneticists (Drummond et al. 2006). The final 
average standard deviation of split frequencies was <0.009. The potential scale reduction factor (PSRF) value for all 
the estimated parameters in the BI analysis was 1.00, indicating that convergence of the MCMC chains was statistically 
achieved (Gelman & Rubin 1992). The ML analysis with rapid bootstrapping was conducted using RAxML-HPC v.8 
on XSDE V8.2.10 (Stamatakis 2014), also through the CIPRES Science Gateway, applying the GTR+G+ I model 
of nucleotide substitutions, with 1000 bootstrap iterations. MP analysis was conducted in PAUP version 4.0 beta 
version 10, with a heuristic search using nreps = 1000, swap = TBR, steepest = no, multrees = no, with 1000 bootstrap 
iterations subsequently run. Bootstrap values for both the ML and MP analyses were mapped on to the BI analysis tree, 
the phylogenies figured in this publication. The full uncompressed tree is shown in supplemental materials.
	 The hypothetical secondary structures of conserved domains in the 16S-23S ITS region, including D1-D1’, Box 
B and V3 helices, were derived using M-fold (Zuker 2003) and re-drawn in Adobe Illustrator. Separate structures for 
operons with two tRNA genes and no tRNA genes were determined. ITS structures of other close taxa were determined 
and reported for comparative purposes.
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Results

Chroakolemma Becerra-Absalón & Johansen, gen. nov.
Diagnosis:—Genetically most similar to Scytolyngbya, from which it differs in the coloration and width in the sheath material and 

in the presence of coiled filaments. Morphologically similar to Chamaethrix, from which it differs by the obligately blackish 
coloration of the sheaths. It also differs notably in the secondary structure of the conserved domains of the 16S-23S ITS region and 
is phylogenetically distinct based on 16S rRNA gene sequence.

Description:—Solitary or intricated filaments, entangled with other filamentous cyanobacterial species forming 
biocrusts or biofilms on soil surfaces. In culture on agar-solidified media, filaments forming thin and compact 
biofilms, intricated, sometimes coiled, with rare single false branching. Sheaths firm, firstly thin and colorless, soon 
becoming thick and colored, open at the end, with one trichome per sheath. Trichomes isopolar, fine, cylindrical, 
sometimes tapering at ends, straight or coiled, constricted at the crosswalls. Cells isodiametric or longer than wide, 
with homogenous content, without aerotopes, with rare granules, pale blue-green. Apical cell conical or rounded. 
Reproduction by hormogonia, produced both by simple fragmentation and through formation of necridial cells.
	 Type species:—Chroakolemma opaca Becerra-Absalón & Johansen.
	 Occurrence:—All three species currently in this genus occur in soils.
	 Etymology:—Chroiakos (Gr.) = colored; lemma (Gr.) = sheath, referring to the distinctive colored sheath.

Chroakolemma opaca Becerra-Absalón & Johansen, sp. nov. (Fig. 1, a–j)
Diagnosis:—This species is morphologically similar to C. pellucida but differs in its possession of an opaque sheath, which obscures 

visibility of the trichome, wider trichomes, and longer cells. It differs from C. edaphica in presence the blackish sheath, the longer 
cells, and occurrence in drier habitat (semi-desert).

Description:—Solitary or intricated filaments entangled with other filamentous cyanobacteria species forming 
biocrust. In culture the thallus is a thin and compact biofilm. Filaments intricated, sometimes coiled, 2.1–5.8 µm wide, 
with rare single false branching, with hormogonia often developing from the false branches that break but remain 
attached by sheath material to the parent filament. Sheaths firm, firstly thin and colorless, soon becoming thick, 
blackish, opaque, obscuring the trichome, open at the ends, with one trichome per sheath. Trichomes isopolar, fine, 
cylindrical, sometimes tapering at ends, constricted at cross walls, 1–3.8 µm wide. Cells distinctly longer than wide, 
sometimes isodiametric, pale blue-green, with homogenous content, lacking aerotopes, rarely granulated, 1.6–6.9 µm 
long. Apical cell conical, sometimes rounded. Reproduction by hormogonia, produced both by simple fragmentation 
and through formation of necridial cells.
	 Habitat:—Aerophytic, forming surface biocrust with other species from semi-desert soils.
	 Type Locality:—Ampliación La Peña, in Mezquital Valley, Hidalgo.
	 Holotype here designated:—MEXICO. Hidalgo state, Ampliación La Peña, in Mezquital Valley, elevation 
2010 m A.S.L., 20° 16’ 02.9” N, 98° 54’ 57.5” W, collected 17 October 2014. Collector number FCME CB18!, Dry 
environmental soil sample deposited in Bio-crust collection from the herbarium of Facultad de Ciencias, FCME, 
UNAM. Also, in part, reference strain 701 preserved in 4% formaldehyde deposited in FCME.
	 Reference Strain:—701, Laboratorio de Ficología, Departamento de Biología Comparada, UNAM.
	 Etymology:—opaca (L): opaque, referring to the opaque mature sheath which obscures visibility of the 
trichome.

Chroakolemma pellucida Becerra-Absalón & Johansen, sp. nov. (Fig. 1, k–u)
Diagnosis:—Similar to C. opaca, but with sheath transparent even when mature and colored, with more frequent false branching, and 

shorter cells. Secondary structure of the Box-B and V3 helices of the ITS region also different between the two species.

Description:—Solitary or intricated filaments entangled with other filamentous cyanobacteria species forming biocrust. 
In culture the thallus is a thin and compact biofilm. Filaments intricated, sometimes coiled, 2.7–5.7 µm wide, with 
rare single false branching, with hormogonia often developing from the false branches that break but remain attached 
by sheath material to the parent filament. Sheaths firm, firstly thin and colorless, later thick, blackish, but translucent, 
frequently open at the ends, with one trichome per sheath. Trichomes isopolar, fine, cylindrical, constricted at cross 
walls, 1–3.2 µm wide. Cells distinctly longer than wide, sometimes isodiametric, pale blue-green, with homogenous 
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content, lacking aerotopes, rarely granulated, 1.8–4.4 µm long. Apical cell cylindrical and rounded, sometimes obtusely 
conical. Reproduction by hormogonia, produced both by simple fragmentation and through formation of necridial 
cells.
	 Habitat:—Aerophytic, in biocrusts with other species from semi-desert soils.
	 Type Locality:—Outside of the cone of the volcanic lake, Atexcac, Puebla.
	 Holotype here designated:—MEXICO. Puebla state, outside of the cone of the volcanic lake, Atexcac, elevation 
2046 m A.S.L., 19°20’ 13” N, 97°21’ 19” W, collected 8 March 2014. Collector number FCME CB1!, Dry environmental 
soil sample deposited in Bio-crust collection of the herbarium Facultad de Ciencias, FCME, UNAM. Also, in part, 
reference strain 719 preserved in 4% formaldehyde deposited in FCME.
(19°20’ 13” N, 97°21’ 19” W, elevation 2046 m A.S.L., collected 8 March 2014 and 26 Sept. 2014)
	 Reference Strain:—719, Laboratorio de Ficología, Departamento de Biología Comparada, UNAM. 
	 Etymology:—pellucida (L): transparent, referring to the transparent nature of mature sheaths.

FIGURE 1. Micrographs of Chroakolemma spp. a–j) Chroakolemma opaca. a–b) from field sample; c–j) in culture; c–e) filament 
appearence; f) false branching; g) apical cell; h) sheath; i–j) vegetative and necridial cells (black arrow); k–u) Chroakolemma pellucida. 
k) from field sample; l–u) in culture; l–m) filament appearence; n–o) false branching; p–q) apical cell; r) hormogonium; s) sheath; t–u) 
vegetative and necridial cells. The number adjacent to each scale represents the length of the scale bar in µm.
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FIGURE 2. Bayesian Inference analysis of 277 Synechococcalean OTUs plus Gloeobacter violaceus as outgroup, based on a 1065 
nucleotide alignment of partial rRNA gene sequences. Support values are BI posterior probability/ML bootstrap/MP bootstrap, with * 
meaning a posterior probability of 1.00 or bootstrap value of 100%, with – meaning a bootstrap support value less than 50%. Taxa names 
in quotation marks, e.g. “Leptolyngbya” are, in our opinion, incorrectly named sequences or taxa requiring revision. The type species 
for Leptolyngbya, L. boryana, is contained within the collapsed clade at the top of the phylogeny. We followed Mai et al. (2018) for 
designation of families. Collapsed nodes can be seen expanded in Fig. S2.
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Chroakolemma edaphica (Elenkin) Becerra-Absalón & Johansen comb. nov.
Basionym:—Plectonema puteale f. edaphica Elenkin (1949:1782).
Synonyms:—Lyngbya lagerheimii f. edaphica Elenkin (1949: 1577), Leptolyngbya edaphica (Elenkin) Anagnostidis et Komárek (2001: 

366).

Morphological comparison with other species:—The populations and strains studied were morphologically most 
similar to Chamaethrix vaginata Dvořák, Hašler, Pitelková, Tabáková, Casamatta & Poulíčková (2017:270). The 
strains of Chroakolemma have sheaths similar to Chamaethrix when they are thick and blackish. This character is 
obligate in Chroakolemma, in which mature filaments always have colored sheaths, whereas in Chamaethrix sheaths 
only sometimes are brown or blackish (Table 1). This blackish pigment differs in coloration from both gloeocapsin 
and scytonemin which are known to have variable expression (Storme et al. 2015). Another morphological difference 
between these two genera is that false branches in Chroakolemma are typically single, only being formed by the 
adhesion of hormogonia to the sheath of the filaments, whereas in Chamaethrix false branches are geminate (Table 1). 
Chamaethrix is phylogenetically distant from Chroakolemma, so morphological similarities are analogous characters not 
indicating shared ancestry. Scytolyngbya is the phylogenetically closest genus to Chroakolemma (Fig. 2). Scytolyngbya 
also possesses colored sheaths, but the sheaths have a fairly unique reddish tinged yellow-brown color and are firm and 
rigid (Table 1). Our strains of Chroakolemma also have thinner filaments than Scytolyngbya (Table 1).

TABLE 1. Comparison of some general and specific characteristics among the three species of Chroakolemma, Chamaethrix 
vaginata and Scytolyngbya timoleontis Song, Jiang & Li (2015: 74). Characteristics of previously described species were 
extracted from Komárek & Anagnostidis (2005), Dvořák et al. (2017) and Song et al. (2015), respectively.

Chroakolemma 
opaca

Chroakolemma 
pellucida

Chroakolemma 
edaphica

Chamaethrix 
vaginata

Scytolyngbya 
timoleontis

Thallus In field samples 
Solitary filaments, 
in culture a thin, 
dirty blue-green to 
blackish film

In field samples 
Solitary filaments, 
in culture a thin, 
dirty blue-green to 
blackish film

Solitary filaments 
or thick, compact, 
dirty blue-green up 
to blackish mats

Green, Blue-green 
or blackish in fine 
mats

Pale blue-green to 
yellow-brown

Filaments Intricate, sometimes 
coiled

Intricate, sometimes 
coiled

Irregularly coiled, 
intricate

Long, straght, bent 
to undulated

Bent, entangled

False branching Rare, single 
branches, from 
hormogonia

Frequently, single 
branches, from 
hormogonia

Very rare Occasionally, 
double as in 
Scytonema

Frequently, single 
branches, from 
hormogonia. 
Narrower than 
filaments

Filament width (µm) 2.1–5.8( = 3.1) 2.7–5.7( = 4.4) 2.5–5 4.15 6–8.4 ( = 7.2)

Sheaths At first thin, 
colourless, later 
thick, blackish, 
opaque

At first thin, 
colourless, later 
thick, blackish, 
transparent

At first thin, 
colourless, later 
thick, slightly to 
intensely brownish 
or blackish

Colorless, firm, 
thin or thick 
seldom intensely 
violet to dark 
violet, brownish to 
black

At first thin, 
colourless, later 
yellow-brown, 
widened and 
lamellated

Color of trichomes Pale blue-green Pale blue-green Pale blue-green Blue-green Not apparent

Trichome width (µm) 1–3.8( = 2) 1–3.2( = 1.7) 1.7–2.5 (3) 2.8 1.9–2.6 ( = 2.3)

Crosswalls Constricted Constricted Constricted Unconstricted or 
slightly constricted

Constricted

...continued on next page
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TABLE 1. (Continued)

Chroakolemma 
opaca

Chroakolemma 
pellucida

Chroakolemma 
edaphica

Chamaethrix 
vaginata

Scytolyngbya 
timoleontis

Cell form Distinctly longer 
than wide, non-
granular

Isodiametric to 
longer than wide, 
non-granular

Isodiametric or 
distinctly longer 
than wide

Longer than wide, 
often granulated

Longer than wide, 
cylindrical, non-
granular

Cell length (µm) 1.6–6.9( = 3) 1.8–4.4( = 3) (.9)1.5–3 3.74 3.5–10.8(32.1),  
 = 6.6

Occurrence Aerophytic, formed 
biocrust with 
other species from 
semidesert soils

Aerophytic, formed 
biocrust with 
other species from 
semidesert soils

Soil or 
subaerophytic 
species, from 
Rusian soils also 
from frescoes in 
Roman hypogea

Soil crust Epilithic, in a 
water treatment 
facility, with 
Fe and Mn 
enrichment

	 Chroakolemma opaca, C. pellucida, and C. edaphica had similar characteristics, such as the blackish sheath, 
coiled filaments, pale blue-green trichomes and constricted crosswalls, but they differ in appearance of the sheath, 
width of filaments and trichomes, and cell length (Table 1). The diagnostic difference between C. opaca and C. 
pellucida is that in first the sheath is opaque, while in second it is translucent.
	 C. opaca had longer cells and wider trichomes than the other species. C. edaphica had the smallest measurements 
in all characteristics, including width of filaments and trichomes and length of cells (Table 1).
	 Molecular Evidence for Taxonomic Classification:—Phylogenetic analysis showed Chroakolemma to be sister 
to Scytolyngbya and a previously unidentified species from Hawaii that likely belongs in Scytolyngbya (Fig. 2). Both 
Chroakolemma and Scytolyngbya belong to a large number of Leptolyngbyaceae separate from the clade containing 
Oculatella and its relatives and the clade containing Nodosilinea and its relatives. 
	 The genetic identity among Chroakolemma, Scytolyngbya, Stenomitos, Chamaethrix and Pantanalinema is less 
than 95%, suggesting that Chroakolemma is evolutionarily distant from all the phylogenetically closest taxa (Table 
2).

TABLE 2. Percent similarity of strains based upon p-distance analysis of the 16S rRNA gene sequence data (percent 
similarity = 100 × (1-p)). Chroakolemma comparisons are in bold font. Sequences followed by B were from operons with 
both tRNA genes, those followed by N were from operons lacking tRNA genes.

1 2 3 4 5 6 7 8 9 10 11

1. Chroakolemma opaca 701B

2. Chroakolemma opaca 701N 99.9

3. Chroakolemma pellucida 719B 100 99.9

4. Chroakolemma pellucida 719N 100 99.9 100

5. Scytolyngbya timoleontis B 94.8 94.7 94.8 94.8

6. Pantanalinema rosaneae N 94.1 94.0 94.1 94.1 93.5

7. Stenomitos rutilans B 94.2 94.2 94.2 94.2 93.6 94.3

8. Chamaethrix vaginata B 93.7 93.6 93.7 92.5 92.7 90.8 90.0

9. Phormidesmis priestleyi B 93.3 93.2 93.3 93.3 92.4 91.2 92.5 91.9

10. Alkalinema pantalense B 93.5 93.4 93.5 93.5 91.6 91.8 92.0 93.7 93.0

11. Oculatella subterranea B 92.3 92.2 92.3 92.3 92.8 92.9 92.6 89.9 90.3 91.0

12. Trichocoleus desertorum B 91.9 91.8 91.9 91.9 92.1 93.4 92.1 89.9 90.4 90.1 91.4
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	 Chroakolemma has two distinct ribosomal operons, one with both tRNA genes and the other lacking tRNA 
genes, an arrangement found in most Leptolyngbyaceae. The D1-D1’ helix differs between operons of C. opaca and 
C. pellucida, but is almost identical between species within operon type (Fig. 3 A–D). Chroakolemma is distinctly 
different in the D1-D1’ helix structure from all closely related Leptolyngbyaceae (Fig. 3 E–H). The Box-B helices 
in Chroakolemma resembled those in other Leptolyngbyaceae in the basal part of the helix, but differed in length, 
sequence, and structure of the terminal loop (Fig. 3, I–P). Furthermore, the Box-B helix in the Mezquital population 
(C. opaca) was the same in both operons, whereas they differed between operons in the Atexcac population (C. 
pellucida). All three Box-B helices observed in Chroakolemma were distinctly different (Fig. 3, I–K).

FIGURE 3. Hypothetical secondary structures for two semi-conserved domains in the 16S-23 ITS region in Chroakolemma species and 
phylogenetically closest taxa. Strain labels to right of Box-B helices apply to both structures in a vertical column. A–H) D1-D1’ helices. 
I–J) Box-B helices.

	 Most of the V3 helices in selected Leptolyngbyaceae were similar in their basal regions, but soon diverged in 
the main part of the helix, such that all were different except for the two species of Chroakolemma (Fig. 4 A–E). The 
two species of Chroakolemma did not vary based on operon (operons within species had identical V3 sequence), and 
differed by only one nucleotide substitution in the terminal loop, but this substitution did not affect secondary structure 
(Fig. 5A). 
	 The length of conserved domains in the 16S-23S ITS also contributed evidence that Chroakolemma was a separate 
evolutionary lineage from other Leptolyngbyaceae (Table 3). The following recognizable domains had consistent 
lengths within both operons of both species that differed from the domain lengths for all other close genera: leader (8 
nt), D1-D1’ helix (61 nt), D4+spacer (24 nt), V3 (38 nt), and spacer+D5+spacer (25 nt). In those operons with both 
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tRNA genes, the V2 helix (20 nt) and spacer preceding the Box-B helix (45 nt) were similarly distinct (Table 3). The 
two species of Chroakolemma were highly similar in lengths of conserved domains, only differing in the Box-B helices 
for the operons with no tRNA genes.
	 The final evidence for the separation of C. opaca from C. pellucida lies in the dissimilarity between homologous 
ITS sequences of the two species. We had several strains of both species, and within both taxa percent dissimilarities 
were 0.00–1.75% when comparisons were made within homolgous operons, but between the two species the percent 
dissimilarities were >7.5% for operons with both tRNA genes and >8.5% for operons lacking tRNA genes. When 
separate phylogenetic analyses were run on the two ITS alignments, the two species clades showed reciprocal 
monophyly (Fig. S1), a criterion that Erwin and Thacker (2008) considered significant in their decision to recognize 
cryptic species in Synechococcus spongiarum Usher, Toze, Fromont, Kuo et Sutton (2004: 183).

TABLE 3. Nucleotide lengths for conserved domains in the 16S-23S ITS region of Chroakolemma spp., closest relatives 
(Scytolyngbya, Pantanalinema, Stenomitos, and Chamaethrix), and more distantly related Leptolyngbyaceae. For operons 
lacking tRNA genes, the D3 to spacer preceding the Box B helix forms a single domain.
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Chroakolemma opaca Both 8 61 34 12 74 20 73 45 41 15 11 24 38 25
Chroakolemma pellucida Both 8 61 34 12 74 20 73 45 41 18 11 24 38 25
Chroakolemma opaca None 8 61 36 132 41 15 11 24 38 25
Chroakolemma pellucida None 8 61 36 132 44 18 11 24 38 25
Scytolyngbya timoleontis Both 7 64 42 11 74 24 73 44 40 15 11 30 66 51
Panatanalinema rosaneae 1 6 82 36 137 44 15 23 23 39 28
Panatanalinema rosaneae 2 6 81 34 135 44 15 11 23 40 28
Stenomitos rutilans 7 65 34 12 74 9 73 51 34 17 11 29 66 30
Phormidesmis WJT66-
NPBG16

7 73 40 12 74 25 73 47 48 17 11 29 46 39

Alkalinema pantanalense 7 64 39 17 74 46 73 37 48 18 11 28 32 29
Oculatella subterránea 7 62 37 11 74 91 73 37 34 15 11 32 39 21
Trichocoleus desertorum 7 62 41 13 74 24 73 14 36 17 11 23 47 28

Discussion

Chroakolemma is a monophyletic taxon diagnosable from the other members of Leptolyngbyaceae. In all phylogenetic 
analyses, the Chroakolemma clade was strongly supported (Fig. 2, Fig. S2). Chroakolemma is sister to Scytolyngbya, 
a relationship with strong support in the BA and ML analyses (Fig. 2). Given this close relationship, the question that 
must be asked is: Should our species be placed in a new genus or in the existing genus Scytolyngbya? The p-distance 
analysis of the 16S rRNA gene to all close relatives shows that it is less than 95% identical to all other genera (Table 2), 
strong evidence that it is a distinct genus from all of these genera. In other taxonomic studies of cyanobacteria (Nübel 
et al. 2000, Abed et al. 2002, Fiore et al. 2007, Řeháková et al 2007, Perkerson et al. 2010, Siegesmund et al. 2008) 
new cyanobacterial genera were erected based on similar evidence.
	 We also analyzed secondary structure of the 16S-23S ITS region, which recently has been suggested as a character 
useful for α-level taxonomy (Boyer et al. 2001, Johansen & Casamatta 2005, Siegesmund et al. 2008, Johansen et 
al. 2011, Osorio-Santos et al. 2014). The length of conserved domains in the 16S-23S ITS and structure of the D1-
D1’, Box-B, and V3 helices in Chroakolemma were distinctly different from the four phylogenetically closest genera 
(Scytolyngbya, Stenomitos, Chamaethrix, and Pantanalinema) in the Leptolyngbyaceae (Figs. 3, 4). These differences 
also provide evidence that Chroakolemma is an evolutionary lineage separate from other Leptolyngbyaceae, including 
Scytolyngbya.
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FIGURE 4. Hypothetical secondary structures of V3 helices in the 16S-23 ITS region in Chroakolemma species and phylogenetically 
closest taxa. Strain labels are to the right of the V3 helices.

	 In addition to the molecular evidence, our Chroakolemma strains presented morphological characteristics 
recognizable both in field and culture populations, such as the presence of wide blackish sheaths, coiled filaments, 
pale blue-green trichomes, and constricted cross-walls. These characteristics appear to be diagnostic for the genus, 
and separate the species in the genus from species in the phylogenetically close genera Scytolyngbya, Chamaethrix, 
Pantanalinema, and Stenomitos. The very distantly related taxon, Trichocoleus badius (Johansen & Lowe in Johansen 
et al. 2008: 26) Mühlsteinová, Johansen & Pietrasiak (2014: 248), possesses blackish sheaths and irregularly coiled 
and bent filaments, but has much more irregular sheaths and is ecologically distinct as well (Johansen et al. 2008).
	 Schizothrix heufleri Grunow ex Gomont (1892: 325) also is capable of producing blackish blue-green to blackish 
violet sheaths and has cell dimensions having overlap with Chroakolemma species. Its ecology is quite different, 
being subaeorophytic on wet rocks and in waterfalls in temperate climates. Unforunately, neither the type species of 
Schizothrix, S. fuscescens Kützing ex Gomont (1892 324), nor S. heufleri have yet been sequenced. Schizothrix is a 
heterogenous genus (Komárek & Anagnostidis 2005), and therefore we are very reluctant to consider Chroakolemma 
to be a species complex within Schizothrix in the absence of phylogenetic evidence. Furthermore, Chroakolemma 
has open sheaths in contrast to the closed sheaths of Schizothrix. It is possible that if S. heufleri is sequenced and 
found to be phylogenetically similar to Chroakolemma that it will be transferred in the future into Chroakolemma. We 
consider it unlikely that S. fuscescens and S. heufleri are in the same genus. S. arenaria Gomont (1892: 312) has been 
sequenced, and it is very distant from Chroakolemma (<88% gene identity based on the 16S rRNA gene sequence).
	 Therefore, we conclude that all the evidence analyzed in this study indicates that our strains belong to a new genus, 
which we call Chroakolemma. The strains from the two localities show minor morphological differences, such as the 
opaqueness of the sheath and longer cells in C. opaca. The phylogenetic analysis based on the 16S rRNA gene sequence 
could not resolve the two species (Fig. 2), an observation made in the description of other cryptic or semi-cryptic species 
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(Perkerson et al. 2011, Osorio-Santos et al. 2014, Johansen et al. 2014). The primary evidence for recognition of the 
two Mexican species of Chroakolemma lies in the high sequence dissimilarity of the ITS region sequence between 
homologous operons. As a rule, strains/sequences within the same species will have percent dissimilarities averaging 
~1.0% and in all pairwise comparisons be less than ~3.0%, while different species will have percent dissimilarities 
>4.0% and demonstrate reciprocal monophyly (Erwin & Thacker 2008). We had percent dissimilarities of >7.5% 
in the operons with both tRNA genes, and >8.5% for operons lacking tRNA genes. Later workers have confirmed 
this criterion (Osorio-Santos et al. 2014, Pietrasiak et al. 2014, Johansen et al. 2017, Shalygin et al. 2017, Vázquez-
Martínez et al. 2018, González-Resendiz et al. 2018, Mai et al. 2018) but specify that different populations >7.0% 
have strong evidence for being separate species, but when ranges fall between 4–7%, supporting evidence is needed to 
recognize separate species. A clear discontinuity between percent dissimilarity of within species and between species 
is needed, combined with reciprocal monophyly. Our species of Chroakolemma meet all these requirements. Based on 
the combined morphological and molecular evidence, we conclude that populations represented by our isolates from 
two different geographic areas (Mezquital Valley and Atexcac) are different species.
	 Both species are in the same type of semi-desert environment and with similar climates, and thus do not appear to 
be separated by habitat. The localities from which our species originated belong to the same desert system (Chihuahuan 
Desert), and the distance between them is relatively little, approximately 256 kilometers. As soil species, one would 
expect these desiccation-resistant taxa to disperse fairly easily by wind. The collection localities are separated by 
a cordillera that crosses the center of Mexico called the Eje Neovolcanico Transversal or Trans-Mexican Volcanic 
Belt. This mountain range represents 20 million years of volcanic activity and presently forms a transverse barrier 
that runs east to west between the Pacific and Atlantic Oceans. The cordillera acts as a high elevation barrier between 
the Mezquital Valley to the north and Atexac Valley to the south. Pine-oak forests occur throughout the range. This 
forested area lacks biological soil crusts and forms a barrier to dispersal of plant and animal species. Atexcac occurs 
in the southern portion of the Chihuahuan Desert, known as the Tehuacan zone. The Tehuacan is home to many 
endemic species of plants and animals across the tree of life (Rzedowski, 2006). It is not surprising that cyanobacterial 
endemism also occurs.
	 Chroakolemma opaca and C. pellucida are new species. Only one previously described species with similar 
characteristics appears in the literature: Leptolyngbya edaphica (Komárek & Anagnostidis 2005). This species differs 
in the width of filaments and trichomes and the length of cells, but possesses the blackish sheath and was described 
from soils. It also bears a morphological resemblance to Chamaethrix vaginata, Schizothrix heufleri, and Trichocoleus 
badius, but these species have different ecological preferences (tropical soils that never freeze for Chroakolemma, and 
wet rocks in temperate climate for the rest). The combination of morphological and ecological criteria suggest that 
L. edaphica belongs to Chroakolemma, and we have acted on that evidence in creating a new combination for this 
unsequenced species. According to Komárek & Anagnostidis (2005), C. edaphica (as L. edaphica) has been reported 
from very different habitats, including aerophytic environments such as soils in temperate places (Russia) and frescoes 
in Roman hypogea, as well as in the neuston of aquatic environments. It is possible that C. edaphica as reported in the 
literature is a complex of different species in different genera, but only further collection and sequencing of this taxon 
will clarify its taxonomic status and biogeographic distribution.

Conclusion

In the last 15 years there has been extensive taxonomic discovery within the simple filamentous forms in the 
Synechococcales. This is the 19th new genus in this group to be published, and we know of plans by several others to 
soon publish an additional nine genera not mentioned in our account. Consequently, the filamentous Synechococcalean 
taxa are becoming one of the most well established groups of cyanobacterial genera, with all of the recent taxa being 
characterized using a polyphasic approach. This is somewhat surprising given the paucity of morphological characters 
in the order. These taxa are morphologically simple, but genetically very divergent, and we expect that continued 
discovery of genera will occur in the near future. The description of new genera also demonstrates the need for more 
fine-scaled taxonomy. In several instances, once genera are named, new species within these genera are subsequently 
discovered. This is demonstrated by Oculatella, which now has a total of 10 species (Zammit et al. in 2012, Osorio-
Santos et al. 2014, Miscoe et al. 2016, Vinogradova et al. 2017), Nodosilinea, which now has five species (Perkerson 
et al. 2011, Vázquez-Martínez 2018), and Scytolyngbya and Plectolyngbya, both of which have undescribed species 
as evidenced in our phylogenetic analysis (see Fig. 2, Fig. S2). All of the “Leptolyngbya” sequences in our extended 
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phylogeny outside of Leptolyngbya sensu stricto represent as-yet undescribed genera and species (Fig. S2), and the 
need for taxonomic work in this interesting and divergent order has certainly not been met, but will provide years of 
opportunity for algal taxonomists. 
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Figure S1. Maximum parsimony analysis of the 16S-23S ITS regions. Analysis conducted in PAUP with 
multrees=yes, swap=TBR, steepest=no, nreps=10,000, bootstraps with 10,000 nreps, indels counted as fifth base. A. 
Operon with both tRNAIle and tRNAAla. B. Operon with no tRNA genes.
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Figure S2. Bayesian Inference analysis of 277 Synechococcalean OTUs plus Gloeobacter violaceus as outgroup, 
based on a 1065 nucleotide alignment of partial rRNA gene sequences. Support values are BI posterior probability/ML 
bootstrap/MP bootstrap, with * meaning a posterior probability of 1.00 or bootstrap value of 100%, with – meaning 
a bootstrap support value less than 50%. Taxa names in quotation marks, e.g. “Leptolyngbya” are, in our opinion, 
incorrectly named sequences or taxa requiring revision. We followed Mai et al. (2018) for designation of family-level 
clades.


