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Abstract

Swamp Lake, Yosemite National Park, is the only known lake in California containing long sequences of varved 

sediments and thus has the potential to provide a high-resolution record of climate variability. This preliminary analysis 

of the diatom assemblages from a 947-cm-long composite sediment core (freeze core FZ02–05; 0–67 cm, Livingstone 

core 02–05; 53–947 cm) shows that the lake has been freshwater, oligotrophic, and circumneutral to alkaline throughout 

its ~16,000-year-long history. The first sediments deposited in the lake show that the vegetation in the watershed was 

sparse, allowing organic matter-poor silt and clay to be deposited in the basin. The basin filled quickly to a depth of at 

least 5 m and remained at least that deep for most of the sediment record. Several short intervals provided evidence of 

large fluctuations in lake level during the Holocene. The upper 50 cm of the core contains evidence of the Medieval 

Climate Anomaly and Little Ice Age.
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Introduction

Diatom studies from Sierra Nevada lakes have, until recently, been somewhat limited in number (Holmes et 

al. 1989, Whiting et al. 1989, Bloom et al. 2003) and have generally been focused on relatively short-term 

environmental changes. Studies using diatom stratigraphies for longer Holocene reconstructions are rare. 

Diatoms have also been part of multi-proxy studies focused on longer time scales (MacDonald et al. 2008) as 

well as numerous pollen, chironomid, and charcoal studies (Davis et al. 1985, Davis & Moratto 1988, 

Anderson 1990, Koehler & Anderson 1994, Porinchu et al. 2002, 2003, Brunelle & Anderson 2003, Potito et 

al. 2006, Hallett & Anderson 2010). These studies have provided an increasingly coherent story of 

environmental change in the central Sierra Nevada over the last 15,000 years: 1) a relatively warm Bølling-

Alleröd (~14,600–2,900 cal yr B.P.); 2) a cooler (by 2–4
o

C) Younger Dryas (~12,900–11,500 cal yr B.P.); 3) a 

gradual warming through the early Holocene; 4) a middle Holocene that was warmer and drier than present; 

and 5) a slight cooling in the late Holocene leading to modern conditions. These studies utilized uniform, 

structureless silts and clays or organic-rich gyttjas, sediments which are not ideal for high-resolution (annual 

to decadal) analyses except over the last couple of centuries.

A composite 947-cm-long sediment core (freeze core FZ02–05; 0–67 cm, Livingstone core 02–05; 53–

947 cm) collected from Swamp Lake, located in the northwest corner of Yosemite National Park, Tuolumne 

County, California (37.95
o

N; 119.83
o

W; 1554 m a.s.l.) is partially varved. This record of paleoenvironmental 

changes in the central Sierra Nevada covers the last ca. 16,000 years.  This site is unusual in its antiquity 

because late Pleistocene glacial advances in the region have limited most lake records to the last 12,000 years. 

This preliminary analysis of the diatom assemblages in Swamp Lake is part of a larger study evaluating late 

Quaternary climate variability on the western slope of the Sierra Nevada.
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TABLE 1: Diatom taxa in Swamp Lake sediments found at more than 1% abundance in any sample.

Study Site

Swamp Lake is located at 1554 m a.s.l., has a surface area of approximately 8 ha and a maximum depth of 

more than 20 m (Fig. 1; Smith & Anderson 1992). The watershed covers about 130 ha. At present, there is no 

permanent inlet stream, although the bathymetry of the lake suggests that a stream may have flowed into the 

eastern end of the lake at some time during its history.  There is a shallow shelf and marshy area at the western 

end (outflow) of the lake. The lake basin comprises the biotite granite and granodiorite of the Early 

Cretaceous El Capitan Granite. The southern and southwestern margin of the lake is bordered by Quaternary 

alluvium (Huber et al. 1989).

Achnanthes childanos Hohn & Hellerman

A. didyma Hustedt

A. helvetica (Hustedt) Lange-Bertalot in Lange-Bertalot & 

Krammer

A. laterostrata Hustedt

A. levanderi Hustedt

A. microscopica (Cholnoky) Lange-Bertalot & Krammer

A. minutissima Kützing

A. nodosa Cleve

A. pusilla Grunow in Van Heurck

A. rossii Hustedt

Anomoeoneis brachysira (Brébisson ex Kützing) Cleve

Asterionella formosa Hassall

Aulacoseira alpigena (Grunow) Krammer

A. ambigua (Grunow) Simonsen

A. distans (Ehrenberg) Simonsen

A. italica (Ehrenberg) Simonsen

A. lirata var. biseriata (Grunow) Haworth

A. perglabra (Østrup) Haworth

A. subarctica (O. Müller)

A. valida (Grunow in Van Heurck) Krammer

Brachysira vitrea (Grunow) Ross in Hartley

Caloneis molaris (Grunow) Krammer in Krammer & Lange-

Bertalot

C. undulata (Gregory) Krammer in Krammer & Lange-

Bertalot

Cyclotella striata (Kützing) Grunow in Cleve & Grunow

Cymbella amphicephala Nägeli

C. cesatii (Rabenhorst) Grunow in A. Schmidt

C. gracilis (Ehrenberg) Kützing

C. naviculiformis (Auerswald) Cleve

Discostella pseudostelligera (Hustedt) Houk & Klee

D. stelligera (Cleve and Grunow) Houk & Klee

Encyonema minutum (Hilse ex Rabenhorst) Mann in Round, 

Crawford & Mann

E. silesiacum (Bleisch ex Rabenhorst) Mann in Round, 

Crawford & Mann

Eunotia arcus Ehrenberg

E. glacialis Meister

E. musicola var. tridentula Nörpel & Lange-Bertalot in 

Lange-Bertalot

E. naegelii Migula

Fragilaria capucina var. gracilis (Østrup) Hustedt

F. fasiculata (Agardh) D.R. Williams and Round

F. nanana Lange-Bertalot

F. parasitic Grunow

F. tenera (W. Smith) Lange-Bertalot 

Frustulia rhomboides (Ehrenberg) Dayton

Gomphonema angustum C.A. Agardh

G. demerarae (Grunow) Frenguelli

G. parvulum (Kützing) Kützing

Hantzschia amphioxys (Ehrenberg) Grunow in Cleve & 

Grunow

Luticola mutica (Kützing) Mann in Round, Crawford & Mann

Meridion circulare var. constrictum (Ralfs) Van Heurck

Navicula cryptocephala Kützing

N. digitulus Hustedt

N. disjuncta Hustedt

N. laevissima Kützing

N. radiosa Kützing

N. saxophila Bock in Hustedt

Neidium ampliatum (Ehrenberg) Krammer in Krammer & 

Lange-Bertalot

Nitzschia fonticula (Grunow) Grunow in Van Heurck

N. frustulum (Kützing) Grunow in Cleve & Grunow

Pinnularia divergens W. Smith

P. interrupta W. Smith

P. microstauron (Ehrenberg) Cleve

P. nodosa (Ehrenberg) W. Smith

P. subcapitata Gregory

Pseudostaurosira brevistriata (Grunow in Van Heurck) 

Williams & Round

P. brevistriata var. inflata (Pantocsek) Edlund

Sellaphora pupula (Kützing) Mereschkowsky

Stauroneis anceps Ehrenberg

Staurosira construens var. venter (Ehrenberg) Hamilton et al.

Staurosirella lapponica (Grunow in Van Heruck) Williams & 

Round

S. pinnata (Ehrenberg) Williams & Round

Surirella bifrons Ehrenberg

Synedra ulna (Nitzsch) Ehrenberg

Tabellaria fenestrata (Lyngbye) Kützing
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FIGURE 1:  Location of Swamp Lake, Yosemite National Park, California. The lake is located on the western side of the Sierra 

Nevada crest.

Material and Methods

In August 2002, a sediment core (nine drives) was collected with a modified Livingstone piston corer (Wright, 

1967) from the deep central basin (>20 m) of Swamp Lake.  To assure the collection of a complete sediment 

record, a freeze-core was collected at the same site. The site was chosen for study because it is in 

approximately the same location previously studied by Smith & Anderson (1992).

Ten samples of plant material taken from Core 02–05 were dated by the U.S. Geological Survey 
14

C 

Laboratory in Reston, Virginia. Dates were calibrated using CALIB 5.0.2 and the IntCal04 dataset (Reimer et 

al. 2004, Stuvier et al. 2005). In addition, eight tephra samples from discrete layers were analyzed using the 

JEOL electron microprobe at the U.S. Geological Survey (Menlo Park, California). 
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Seventy-four samples (60 from core 02–05; 14 from core FZ02–05) for diatom analysis were processed 

using hydrogen peroxide, hydrochloric acid, and nitric acid, (Battarbee 1986) to remove carbonate and 

organic matter, and sodium pyrophosphate to deflocculate the remaining clay.  Approximately 50 μl of the 

resulting suspension were dried on a 22 X 30 mm coverslip and permanently mounted using Naphrax®.  At 

least 500 frustules were enumerated following the method of Schrader & Gersonde (1978) using a Leica DM 

LB2 microscope with Nomarski optics at magnifications of 630X and 1000X.   Diatom identifications and 

ecological interpretations were based on Lowe (1974), Gasse (1986), Krammer & Lange-Bertalot (1986, 

1988, 1991a, 1991b), Lange-Bertalot & Krammer (1987, 1989), Cumming et al. (1995), Round & 

Bukhtiyarova (1996), Krammer (1997a, 1997b, 2000, 2002), and Lange-Bertalot (2001).

Results

Chronology

Preliminary AMS 
14

C dates and tephra correlations are plotted in Fig. 2. The eight tephras were identified by 

comparing the chemistry of the tephra samples to the more than 5,900 tephra geochemical records in the U.S. 

Geological Survey Tephrochronology Project database. The Tsoyowata and Mazama ashes both originated 

from Mount Mazama (now Crater Lake) in southern Oregon. Six of the tephras identified are from the Mono 

Craters, which lie on the east side of the Sierra Nevada. These tephras are chemically similar and cannot be 

differentiated using current tephrochronological techniques, and are therefore shown as undated. The 

youngest Mono Craters tephra was erupted about 665 cal yr B.P. We do not report an age model here pending 

additional 
14

C and tephra analyses (D. Hallett, personal communication, 2009). Based on these dates, the 

average sedimentation rate above 700 cm is about 74 cm/1000 yr.

Sediments and stratigraphy

Core 02–05 is composed of nine 1-meter-long drives. Core FZ02–05 collected the top 67 cm of sediment. The 

two cores were correlated using a Mono Craters tephra layer (665 cal yr B.P.). The composite core is 947-cm-

long (Fig. 2). The sediments that make up the core include massive gray clay, layered silt and clay, peat, diatom-

rich varved silt and clay, and massive gyttja. The preliminary description was reported in Starratt et al. (2006).

Below 700 cm, the sediments are dominated by glacially derived massive gray clay and layered silt and 

clay. The lowermost 40 cm of the core contains relatively few diatoms.  Massive dark brown gyttja is present 

between 805 and 785 cm and 760 and 705 cm. The first varved diatom-rich silt occurs at the top of this 

sequence.  The interval between 700 and 600 cm contains massive gyttja and short varved sections between 

gaps on the core. A 3-cm-thick layer of peat is present at the top of this section.  The core is dominated by 

diatom-rich silt varves through the remainder of the core. A 12-cm-thick layer of peat occurs between the 

Tsoyowata and Mazama ashes.

Diatoms

A total of 228 species and varieties are present in the composite core 02–05, of which 76 compose more that 

1% of the assemblage in one or more samples. Thirty-one species are present in the sample collected from the 

top of FZ02–05.

Discostella Houk & Klee (2004: 204–205) is the most abundant genus in the lake, composing as much as 

75% of the assemblage (Figs 3 & 4). Discostella abundance is lowest during the initial development of the 

lake and during the two intervals of peat deposition. Discostella stelligera (Cleve and Grunow) Houk & Klee 

(2004: 208) is more abundant below 800 cm and quickly falls to below 20% abundance for the remainder of 

the record, whereas D. pseudostelligera (Hustedt) Houk & Klee (2004: 223) becomes the dominant species, 

reaching abundances of greater than 50% at several intervals. In FZ02–05 the abundance of Discostella is 

above 40% between 65 and 50 cm, and then drops to less than 20% from 45 to 10 cm, and returns to levels 

above 40% in the upper 5 cm of the core.
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FIGURE 2: Generalized stratigraphic column and ages (
14

C and tephrochronology) for a composite of freeze core FZ02–05 and 

Livingstone core 02–05.
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FIGURE 3: Relative abundances of species of Discostella and Cyclotella in Livingstone core 02–05 with abundances of greater than 

1% of the assemblage in at least one sample.

10 30 50 10 30 50 0.2 0.6 1.0 10 30 50 70

Disc
os

tel
la 

to
ta

l

0

200

400

600

800

D
ep

th
 in

 c
or

e 
(c

m
)

% of total assemblage

Disc
os

te
lla

 ps
eu

do
ste

llig
era

Disc
os

te
lla

 st
ell

ige
ra

Cyc
lote

lla
 st

ria
ta

665
923

1903
2851

3467
4268

7627
7840

10,728

11,418
12,502

14,048
14,845

Younger Dryas

Age
 (c

al 
yr 

B.P.
)



STARRATT & ANDERSON134   •  Phytotaxa 127 (1)  © 2013 Magnolia Press

FIGURE 4: Relative abundances of species of Discostella in freeze core FZ02–05 with abundances of greater than 1% of the 

assemblage in at least one sample. The freeze core record represents the last 1000 years.

Ten species and varieties of Aulacoseira Thwaites (1848: 167) are present and the genus composes almost 

40% of the assemblage (Figs 5 & 6). The diversity of those taxa making up more than 2% of the assemblage is 

greater in core 02–05 (six species and varieties) than in core FZ02–05 (five species and varieties). Aulacoseira is 

most abundant above 650 cm in the varved sequences where it reaches a maximum of 39% abundance; several 

subpeaks of 25–30% abundance also occur.  The most common species are A. distans (Ehrenberg) Simonsen 

(1979: 57), A. italica (Ehrenberg) Simonsen (1979: 60), and A. alpigena (Grunow) Krammer (1991: 93).

10 30 50

Disc
os

te
lla

 p
se

udoste
llig

era

Disc
os

te
lla

 st
e llig

era

5 10 20 40 60

Disc
os

te
lla

 to
ta

l

0

10

20

30

40

50

60

D
ep

th
 in

 c
or

e 
(c

m
)

% of total assemblage

Medieval Climate Anomaly-
Little Ice Age transition



 Phytotaxa 127 (1)  © 2013 Magnolia Press  •   135PLEISTOCENE AND HOLOCENE DIATOMS OF SWAMP LAKE

FIGURE 5: Relative abundances of species of Aulacoseira in Livingstone core 02–05 with abundances of greater than 1% of the 

assemblage in at least one sample.

FIGURE 6: Relative abundances of species of Aulacoseira in freeze core FZ02–05 with abundances of greater than 1% of the 

assemblage in at least one sample. The freeze core record represents the last 1000 years.
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The third dominant group is the Fragilaria “complex,” which includes Fragilaria Lyngbye (1819: 182), 

Pseudostaurosira Williams & Round (1988: 276), Staurosira Ehrenberg (1843: 45), and Staurosirella

Williams & Round (198: 274). Together, these genera account for more that 40% of the assemblage in some 

samples (Figs 7–11). The overall pattern of abundance is similar to that of Aulacoseira and opposite that of 

Discostella. Many of the specimens can only be identified as part of this “complex” and are placed in the 

category “Fragilaria spp.” The majority of these are small Fragilaria, Pseudostaurosira, Staurosira, and

Staurosirella spp. Of those specimens that can be identified to the species level, lanceolate species (F. nanana 

Lange-Bertalot in Krammer & Lange-Bertalot (1991: 130), F. tenera (W. Smith) Lange-Bertalot (1980: 746), 

and F. capucina var. gracilis (Østrup) Hustedt (1950: pl. 36, fig. 31) are relatively rare; the exception is F. 

nanana which reaches an abundance of 15%, but quickly returns to 3–4% of the assemblage (Fig. 7). 

Staurosirella is most abundant (7%) at 750 cm and then falls to levels below 3% through the upper part of the 

core. Staurosira, primarily Staurosira construens var. venter (Ehrenberg) Hamilton in Hamilton et al. (1992: 

29), is most abundant at 300 cm and is almost absent below that depth. The abundance of Pseudostaurosira, 

primarily Pseudostaurosira brevistriata (Grunow in Van Heurck) Williams & Round (1987: 276) and P. 

brevistriata var. inflata (Pantocsek) Edlund (1994: 12), is generally greater in core FZ02–05 than Staurosira

and Staurosirella spp., reaching a maximum of 10% at a depth of 45 cm. Staurosira (10%) and Staurosirella

(7%) are both more abundant in core FZ02–05 than in the lower part of the record.

FIGURE7: Relative abundances of species of Fragilaria in Livingstone core 02–05 with abundances of greater than 1% of the 

assemblage in at least one sample.
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FIGURE 8: Relative abundances of species of Pseudostaurosira in Livingstone core 02–05 with abundances of greater than 1% of the 

assemblage in at least one sample.
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FIGURE 9: Relative abundances of species of Staurosira and Staurosirella in Livingstone core 02–05 with abundances of greater than 

1% of the assemblage in at least one sample.

FIGURE 10: Relative abundances of species of Fragilaria and Pseudostaurosira in freeze core FZ02–05 with abundances of greater 

than 1% of the assemblage in at least one sample. The freeze core record represents the last 1000 years.
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FIGURE 11: Relative abundances of species of Staurosira and Staurosirella in freeze core FZ02–05 with abundances of greater than 

1% of the assemblage in at least one sample. The freeze core record represents the last 1000 years.+

FIGURE 12: Relative abundances of species of Asterionella, Synedra, and Tabellaria in Livingstone core 02–05 with abundances of 

greater than 1% of the assemblage in at least one sample.
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Asterionella formosa Hassall (1850: 10) is present only above the upper peat layer at 400 cm (Figs 12 & 

13); its abundance exceeds 15% at 340 cm and then returns to less than 10%. The greatest abundance (23%) in 

core 02–05 occurs near the top at 57 cm. The trend in abundance continues in core FZ02–05 with the highest 

(24%) abundance at 65 cm. From 50 to 0 cm, the abundance is below 5%. Synedra ulna (Nitzsch) Ehrenberg 

(1832: 87) and Tabellaria Ehrenberg ex Kutzing )(1844: 127) spp. (primarily T. fenestrata (Lyngbye) Kützing 

(1844: 127)) are present in abundances below 3%. Abundances of these taxa are lower in core FZ02–05.

FIGURE 13: Relative abundances of Asterionella formosa in freeze core FZ02–05 with abundances of greater than 1% of the 

assemblage in at least one sample. The freeze core record represents the last 1000 years.

Achnanthes Bory de Saint-Vincent (1822: 79, 593) sensu lato is the most diverse genus recovered with 34 

species and varieties enumerated (Fig. 14 & 15). Achnanthes helvetica (Hustedt) Lange-Bertalot in Lange-

Bertalot & Krammer (1989: 63), A. minutissima Kützing (1833: 578), and A. pusilla Grunow in Van Heurck 

(1880: pl. 27, fig. 33, 34) are most abundant in core 02–05; A. helvetica and A. microscopica (Cholnoky) Lange-

Bertalot & Krammer (1989: 99) are most abundant in core FZ02–05. The highest abundance (17%) of 

Achnanthes species occurs in the lowest part of core 02–05; above 760 cm, the abundance does not exceed 10%.
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Other relatively abundant species in core 02–05 include Encyonema Kützing (183: 589) and Cymbella

C.A. Agardh (1830: 1) (Fig. 16; 15% and 9.5%, respectively; 13 species combined). Encyonema minutum 

(Hilse ex Rabenhorst) Mann in Round, Crawford & Mann (1990: 667) (12%) and Cymbella gracilis 

(Ehrenberg) Kützing (1844: 79) (6.5%) are the most common. These two genera are most abundant below the 

lower peat layer. The highest abundance (7.5%) of Eunotia Ehrenberg (1837: 44) (16 species and varieties) 

and Frustulia rhomboides (Ehrenberg) Pfitzer (1871: 164) (3.7%) are in the massive gyttja below 600 cm 

(Fig. 17). Gomphonema Ehrenberg (1832: 87) (Fig. 18; 10 species; maximum abundance of 7%) is present 

throughout the core, but is most abundant in the varved and massive gyttja between 740 cm and 610 cm. 

Hantzschia amphioxys (Ehrenberg) Grunow in Cleve & Grunow 1880: 103) and Luticola mutica (Kützing) 

Mann in Round, Crawford & Mann (1990: 670) are present in abundances above 2% at 940 cm (Fig 18).

FIGURE 14: Relative abundances of species of Achnanthes in Livingstone core 02–05 with abundances of greater than 1% of the 

assemblage in at least one sample.
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FIGURE 15: Relative abundances of species of Achnanthes in freeze core FZ02–05 with abundances of greater than 1% of the 

assemblage in at least one sample. The freeze core record represents the last 1000 years.
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FIGURE 16: Relative abundances of species of Cymbella and Encyonema in Livingstone core 02–05 with abundances of greater than 

1% of the assemblage in at least one sample

FIGURE 17: Relative abundances of species of Eunotia and Frustulia in Livingstone core 02–05 with abundances of greater than 1% 

of the assemblage in at least one sample.
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FIGURE 18: Relative abundances of species of Gomphonema, Hantzschia, and Luticola in Livingstone core 02–05 with abundances 

of greater than 1% of the assemblage in at least one sample.

Discussion and Conclusion

Smith & Anderson (1992) and Anderson (2011) presented a 16,000-year-long paleoecological record from 

Swamp Lake that provided an important middle elevation view of late Pleistocene and Holocene climate 

through vegetation change on the western slope of the Sierra Nevada. They showed that the environment at 

the time of the Pleistocene-Holocene transition was distinctly different from the modern, with a mix of high 

elevation conifers and lower elevation montane trees that suggest that vegetation lagged the climate change 

experienced elsewhere in the Sierra Nevada. The early Holocene was marked by increased temperatures and 

drier conditions, followed by a late middle Holocene cooling trend which continued into the late Holocene as 

modern oceanographic conditions became established along the northern California coast (Barron et al. 2003, 

Barron & Bukry 2007).
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The record from composite core 02–05 contains an approximately 16,000-year-long record of climate-

driven changes within the Swamp Lake watershed similar to those reported by Smith & Anderson (1992) and 

Anderson (2011). The lowest 250 cm (Late Glacial period) show a gradual change from fine-grained clastic 

sediments (primarily silt and clay) to more massive organic-rich gyttja. This suggests that during this time the 

glaciers of the Tioga Stage retreated from the area, leaving behind a minimally vegetated surface. As the 

surface became vegetated, the amount of clastic sediment that washed into the lake decreased. Above 700 cm 

(Younger Dryas and younger), relatively little clastic sediment was being washed directly into the lake. Street 

et al. (2012) show a general increase in organic matter in the lake and vegetation (relatively high C/N) in the 

surrounding watershed 

The only significant numbers of diatoms associated with subaerial environments (Hantzschia amphioxys, 

Luticola mutica) appear at a depth of 930 cm (late glacial period), followed by epipelic and epiphytic taxa 

(Gomphonema, Cymbella, and Encyonema) and small Achnanthes, which may also indicate active, well-

oxygenated water.  Bloom et al. (2003) have shown that many of the species common at this time are found in 

water of relatively low temperatures. The epiphytic genus Cocconeis Ehrenberg (1837: 173) occurs, but is 

very rare in these sediments, suggesting that aquatic macrophytes were not abundant.

The lake appears to have filled rapidly. The increase in the abundance of Discostella indicates that a water 

depth greater than 5 m was reached by a depth of 840 cm (last glacial period) in the core, where the abundance 

of Discostella reaches 70%. Rühland et al. (2003) and Rühland & Smol (2005) have shown that small 

cyclotelloid species such as D. pseudostelligera and D. stelligera occur in great abundance in arctic lakes 

greater than 5 m in depth. Tycoplanktonic taxa (Aulacoseira, Fragilaria “complex”) are present in this 

interval, but generally don’t exceed 15% of the total assemblage. Throughout most of its past, the dominance 

of the diatom assemblage by Discostella indicates that Swamp Lake was a freshwater, slightly alkaline, 

oligotrophic lake. The presence of Aulacoseira and members of the Fragilaria “complex” suggests that the 

shallower areas may have had higher nutrient levels.

With the exception of the two peat layers, the remainder of the core (above 600 cm) is dominated by 

varved sediments. The lower peat interval contains the greatest abundance of acidophilic species (Eunotia; 

7.1%, Frustulia Rabenhorst (1853: 50); 3.7%). The abundance of tycoplanktonic taxa also increases. The 

lower peat interval may correspond to the Younger Dryas as recognized at Starkweather Lake (2424 m a.s.l.) 

in the central Sierra Nevada, just west of the crest of the range, by MacDonald et al. (2008), with a relatively 

high abundance of planktonic diatoms in the early part of the interval followed by a substantial decrease 

(~50%) in the later part of the Younger Dryas. MacDonald et al. (2008) report decreased diatom-inferred 

salinity and lake depth at Barrett Lake (2816 m a.s.l.) in the central Sierra Nevada, just east of the crest of the 

range, during the early part of the Younger Dryas followed by a slight decrease in depth and increase in 

salinity. This corresponds to a slight increase of Cyclotella striata (Kützing) Grunow in Cleve & Grunow 

(1880: 119) at the end of the Younger Dryas in Swamp Lake. The upper peat interval also has a substantial 

decrease in Discostella and increase in some tycoplanktonic and benthic taxa, and may represent a dry interval 

in the middle Holocene.

The upper 600 cm (Holocene) varved section is dominated by Discostella, and to lesser extent, 

Aulacoseira and the Fragilaria “complex” with high Discostella abundances corresponding to low numbers 

of Aulacoseira and Fragilaria “complex” taxa. Most of the Aulacoseira species present have a high number 

of pores per 10μm which Kilham (1990) suggests is an indication of shallow water. Aulacoseira distans has a 

relatively high light:phosphorous ratio which may reflect better mixing of nutrient-poor waters (Kilham 

1990). The abundance of Asterionella formosa, which appears at 400 cm (middle Holocene), may reflect an 

increase in the abundance of Si in the system. Starratt et al. (2006) and Street et al. (2007) have shown that 

biogenic silica increases in that interval, and that the fluctuations in the abundance of A. formosa and biogenic 

silica are similar. Kilham (1971) and Kilham(1975) have shown that the abundance of A. formosa is related to 

Si availability. 

Variations in the abundance of Discostella indicate the lake level fluctuated in response to the Medieval 

Climate Anomaly and Little Ice Age. Between 65 and 45 cm Discostella composes about 40% of the flora, 
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between 40 and 15 cm it composes between 15 and 20%, and above 15 cm its abundance reaches between 50 

and 60%. The interval of low abundance may represent an interval during which ice covered the lake for a 

greater portion of the year.  This is supported by the low abundance of Asterionella formosa above 50 cm. 

Agbeti & Smol (1995) have shown that the abundance of planktonic species such as A. formosa is lower 

during periods of extended ice cover.

The Swamp Lake sediment sequence is rare among the limited lacustrine records of climate change in the 

Sierra Nevada. It is the only sediment history that contains significant varved sections with the potential for 

establishing an ultra-high resolution climate record for much of the Holocene. The sediments also record the 

transition from sediment-dominated diatom-poor varves in the late Pleistocene to diatom-dominated varves 

over much of the last 10,000 years. Swamp Lake also has one of the few records that includes the last glacial 

maximum and the entire Holocene.
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