

# Article



https://doi.org/10.11646/phytotaxa.726.2.3

# Entyloma ratibidae (Entylomataceae), a new smut fungus on Ratibida pinnata (Asteraceae) from USA based on molecular analyses, comparative morphology, and host specificity

## TEODOR T. DENCHEV<sup>1,2,4</sup>, CVETOMIR M. DENCHEV<sup>1,2,5\*</sup> & MARTIN KEMLER<sup>2,3,6</sup>

- <sup>1</sup>Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- <sup>2</sup>IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
- <sup>3</sup>Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
- <sup>4</sup> ttdenchev@gmail.com; https://orcid.org/0000-0002-7242-3307
- <sup>5</sup> cmdenchev@yahoo.co.uk; https://orcid.org/0000-0001-6301-1629
- <sup>6</sup> martin.kemler@uni-hamburg.de; https://orcid.org/0000-0002-0738-4233
- \*Corresponding author: = cmdenchev@yahoo.co.uk

#### **Abstract**

Entyloma species are highly specialized smut fungi. To clarify the taxonomic status of the Entyloma species on Ratibida pinnata from USA, we conducted a molecular study based on ITS and LSU rDNA sequences. The phylogenetic analyses indicate that this species differs from the Entyloma species with available molecular data. Based on molecular and morphological evidence, and host specialization, a new species, Entyloma ratibidae, is described and illustrated. Entyloma ratibidae differs from E. davisii on Rudbeckia hirta by having smaller spores and thinner spore walls, from E. anceps on Rudbeckia laciniata by having thicker spore walls, and from the other Entyloma species by specialization on Ratibida pinnata. The phylogenetic placement and affinities of the new species in Entyloma are analyzed. Additional collections and molecular study are required to clarify the taxonomic status of 'Entyloma polysporum' on Ratibida columnifera from USA.

**Key words:** Entyloma, Iowa tallgrass prairies, new species, phylogeny, Ratibida columnifera, Rudbeckia, smut fungi, taxonomy

#### Introduction

Entyloma de Bary is a large, cosmopolitan genus in the Entylomataceae, with 192 recognized species on host plants belonging to 27 families (Denchev et al. 2021). Entyloma species develop sori in the vegetative organs of their hosts, mostly in leaves and petioles, rarely in stems or roots, usually forming few to numerous spots, sometimes swellings or galls formed by hypertrophic growth of host tissue. Spores are permanently embedded in the host tissue, singly or in irregular groups, hyaline, yellow or yellowish brown, and usually with a smooth, two-layered wall; very rarely the outer layer is tuberculate or torn apart into prismatic, pyramidal or coarse and irregular pieces (Denchev et al. 2013, 2021, He et al. 2024). In the case of E. eranthidis T. Denchev et al., the spore wall is initially smooth, at maturity cracking and rupturing irregularly, some ruptures reaching inner layer (Denchev et al. 2021). Spores are often with a hyaline gelatinous sheath.

As part of an ongoing study of smut fungi diversity, we conducted a molecular study of specimens of *Entyloma* on *Ratibida pinnata* (Vent.) Barnhart (Asteraceae) obtained on loan from Ada Hayden Herbarium (ISC) at Iowa State University. *Ratibida* Raf. is a small genus with seven species, all native to North America (Richards 1968, Anderberg *et al.* 2007). *Ratibida* belongs to subtribe Rudbeckiinae H. Rob. (tribe Heliantheae Cass.). *Rudbeckia* L. is the second genus in the Rudbeckiinae subtribe, with 17 species, all native to North America (Urbatsch & Cox 2006a, b, Anderberg *et al.* 2007). The species in these genera are known as coneflowers due to the conical or columnar shape of the receptacle of their flower heads (capitula). *Ratibida pinnata* and *R. columnifera* (Nutt.) Wooton & Standl., and species of *Rudbeckia* are highly valued as ornamental species due to their brightly colored flowers, long bloom period, and ability to attract pollinators and other beneficial insects (Richards 1968, Kersten *et al.* 2022).

The concept of distinguishing species in *Entyloma* has varied significantly during the last eight decades. Savile (1947) applied a morphological species concept, based on spore sizes and asexual morph. He synonymized species with similar morphology, parasitizing host species on different genera from the same family. As a result of this broad species concept, Savile accepted only eight species of *Entyloma* on North American asteraceous hosts (Denchev *et al.* 2021). Other authors (*e.g.* Liro 1938, Lindeberg 1959, Vánky 2011) applied narrower species concepts, considering *Entyloma* species as infecting one or more hosts from the same host genus or occasionally a few closely related host genera. During the last two decades with the application of molecular methods, it became evident that members of *Entyloma* exhibit a far higher host specificity, parasitizing a single or only a few closely related host species (*e.g.* Begerow *et al.* 2002, Vánky & Lutz 2010, Kruse *et al.* 2018, Denchev *et al.* 2021, Chaverri *et al.* 2025).

There are 54 species of *Entyloma* known from the USA (Denchev *et al.* 2013, Savchenko *et al.* 2014, Rooney-Latham *et al.* 2017, Savchenko & Carris 2017, Piątek *et al.* 2024). The aim of the present study was to clarify the taxonomic status of the *Entyloma* species on *Ratibida pinnata*. A combined approach, using molecular data, host specialization, and comparative morphology revealed a new species, *E. ratibidae*, which is described and illustrated herein.

#### Materials and methods

#### Materials

This study is based on phylogenetic and/or morphological analyses of eight 'Entyloma compositarum' specimens on Ratibida pinnata obtained from Ada Hayden Herbarium (ISC) at Iowa State University (herbarium code according to Thiers 2025+).

# DNA extraction, PCR amplification, and sequencing

For DNA extraction, sori of *Entyloma* were used. The sample was milled in the Bead Ruptor 12<sup>TM</sup> homogenizer (Omni International), using two steel beads. Genomic DNA was isolated using the my-Budget Plant DNA Kit<sup>TM</sup> (Bio-Budget Technologies GmbH, Germany), according to the manufacturer's protocol (protocol 1: "Isolation of DNA from plant material using lysis buffer SLS"). PCR using GoTaq<sup>TM</sup> Master Mix (Promega, USA) with the primer combinations M-ITS1/ITS4 (Stoll *et al.* 2003, White *et al.* 1990) and LR0R/NL4 (Moncalvo *et al.* 1995, O'Donnell 1992) was performed to amplify the ITS and LSU rDNA regions, respectively, which are the standard molecular markers for *Entyloma* (*e.g.*, Piątek *et al.* 2024). Standard thermal cycling conditions with an annealing temperature of 52 °C were used for amplification. Five μl of PCR products were purified using a modified ExoSAP protocol (1 : 5 diluted in ddH<sub>2</sub>O; New England Biolabs, USA). Amplicons were sequenced in both directions at Macrogen Europe (Macrogen Inc.) using the same primers as in the respective PCRs. Subsequently, forward and reverse reads were quality checked and assembled in Geneious 10.2.6 (Biomatters Ltd, New Zealand). Sequences were deposited in the NCBI nucleotide database (see Table 1 for accession numbers).

## Phylogenetic analysis

The newly generated *Entyloma* sequences and representative sequences downloaded from GenBank (Table 1) were aligned with the g-ins-i option in MAFFT using the online server version (Katoh *et al.* 2019). GBlocks (Castresana 2000), implemented in SeaView (Gouy *et al.* 2010), was used to remove ambigous bases, as well as leading and trailing gaps while allowing small final blocks and gaps within the alignment. The alignment was partitioned for both DNA regions and the best nucleotide substitution model was determined using ModelTest-NG (Darriba *et al.* 2020), implemented in raxmlGUI 2.0 (Edler *et al.* 2021) for both individually. RaxML-NG (Kozlov *et al.* 2019), also implemented in raxmlGUI, was subsequently used for inferring a maximum likelihood phylogeny with 1000 thorough bootstrap replicates. The phylogeny was visualized in iTOL v.5 (Letunic & Bork 2021).

#### Morphological examination

Dried specimens of 'Entyloma compositarum' from ISC were examined using a light microscope (LM). For LM observations and measurements, spores were mounted in lactoglycerol solution (w : la : gl = 1 : 1 : 2) on glass slides, gently heated to boiling point to rehydrate the spores, and then cooled. The measurements of spores are given as min–max (extreme values) (mean  $\pm$  1 standard deviation). The description below is based on the specimens examined. The shapes of spores are arranged in descending order of frequency.

**TABLE 1.** Specimens and NCBI nucleotide database accession numbers used for phylogenetic analysis (newly generated sequences indicated in boldface).

| Species            | Host/substrate                       | Country     | Voucher                      | ITS      | LSU      |
|--------------------|--------------------------------------|-------------|------------------------------|----------|----------|
| Entyloma arnicale  | Arnica montana                       | Germany     | TUB 012093                   | AY854964 | MT332407 |
| E. arnoseridis     | Arnoseris minima                     | France      | TUB 012523                   | AY081017 | MT332396 |
| E. atlanticum      | Geranium<br>tuberosum                | Iran        | BRIP: HUV 14885              | AY081018 | AY081011 |
| E. australe        | Physalis peruviana                   | Zimbabwe    | BRIP: HUV 18886              | MT332212 | MT332423 |
| E. belangeri       | <i>Malus domestica</i> ev.<br>Elstar | Netherlands | CBS 111600                   | AY259074 | AY272019 |
| E. bidentis        | Bidens pilosa                        | Costa Rica  | TUB 012576                   | AY081020 | KP668990 |
| E. browalliae      | Browallia<br>americana               | Costa Rica  | TUB 012577                   | AY081021 | KP668989 |
| E. bullosum        | Ranunculus<br>paludosus              | Greece      | GLM-F 107632                 | MF924658 | N/A      |
| E. calceolariae    | Calceolaria<br>chelidonioides        | Ecuador     | BRIP: HUV 16396              | AY081022 | MT332397 |
| E. carmeli         | Eryngium falcatum                    | Israel      | HAI 4521                     | KF310892 | N/A      |
| E. chrysosplenii   | Chrysosplenium alternifolium         | Germany     | TUB 012537                   | MT332207 | MT332418 |
| E. comaclinii      | Comaclinium<br>montanum              | El Salvador | M: M. Piepenbring 1762       | AY081025 | MT332398 |
| E. corydalis       | Corydalis solida                     | Germany     | BRIP: HUV 13171              | AY081027 | AY860053 |
| E. cosmi           | Cosmos bipinnatus                    | Japan       | BRIP: HUV 20935              | KJ728759 | NG059239 |
| E. costaricense    | Viguiera sp.                         | Panama      | PMA: M. Piepenbring 2384     | AY081028 | MT332399 |
| E. dahliae         | Dahlia sp.                           | Switzerland | TUB 012574                   | AY081029 | KP668992 |
| E. davenportii     | Malus × domestica cv. Elstar         | Netherlands | CBS 111604                   | AY259064 | AY272010 |
| E. deliliae        | Delilia biflora                      | Costa Rica  | USJ: M.<br>Piepenbring 1004  | AY081030 | MT332400 |
| E. diastateae      | Diastatea<br>micrantha               | El Salvador | TUB 012579                   | AY854974 | KP668993 |
| E. doebbeleri      | Dahlia imperialis                    | Costa Rica  | USJ: M.<br>Piepenbring 584   | AY854973 | MT332411 |
| E. eburneum        | Ranunculus repens                    | Poland      | KRAM F-59037                 | NR161036 | N/A      |
| E. elstari         | Malus × domestica cv. Elstar         | Netherlands | CBS 111593                   | DQ206984 | AY745721 |
| E. eranthidis      | Eranthis<br>longistipitata           | Uzbekistan  | TUR 109345                   | MT118137 | N/A      |
| E. eryngii         | Eryngium<br>campestre                | Hungary     | BRIP: HUV 15339              | AY081033 | MT332401 |
| E. eryngii-cretici | E. creticum                          | Israel      | HAI 4526                     | KF310894 | N/A      |
| E. eryngii-plani   | E. planum                            | Romania     | BRIP: HUV 11650              | AY081034 | MT332402 |
| E. eschscholziae   | Eschscholzia<br>californica          | Germany     | GLM: J. Kruse<br>B0858       | MT332213 | MT332424 |
| E. fergussonii     | Myosotis arvensis                    | Austria     | TUB 012098                   | AY854970 | MT332410 |
| E. ficariae        | Ficaria verna                        | Germany     | TUB 019287                   | HM046471 | HM046481 |
| E. fuscum          | Papaver rhoeas                       | Germany     | B 70000601                   | MT332209 | MT332420 |
| E. gaillardianum   | Gaillardia aristata                  | Germany     | R.B. 2055                    | AY081037 | AF133575 |
| E. glaucii         | Glaucium flavum                      | Greece      | BRIP: HUV 7035               | AY081036 | AY081014 |
| E. guaraniticum    | Bidens pilosa                        | Cuba        | HAJB: M.<br>Piepenbring 2264 | AY081038 | MT332403 |

...continued on the next page

**TABLE 1.** (Continued)

| Species                    | Host/substrate                  | Country     | Voucher                                          | ITS      | LSU      |
|----------------------------|---------------------------------|-------------|--------------------------------------------------|----------|----------|
| E. helianthi               | Helianthus annuus               | USA         | KRAM F-58718                                     | NR172814 | N/A      |
| E. hieracii                | Hieracium<br>lachenalii         | Germany     | TUB 012100                                       | AY854967 | MT332409 |
| E. hieracii                | H. murorum                      | Switzerland | TUB 012583                                       | AY081039 | N/A      |
| E. hieracii                | H. murorum                      | Switzerland | TUB 012557                                       | EU233810 | N/A      |
| E. holwayi                 | Cosmos caudatus                 | El Salvador | USJ: M.<br>Piepenbring 1769                      | AY081040 | KP668991 |
| E. jolantae                | Ranunculus<br>oreophilus        | Poland      | KRAM F59030                                      | MF924688 | N/A      |
| E. klenkei                 | R. marginatus                   | Greece      | GLM-F 107659                                     | MF924663 | N/A      |
| E. kochmanii               | R. lanuginosus                  | Italy       | GLM-F 107660                                     | MF924678 | N/A      |
| E. lagoeciae               | Lagoecia<br>cuminoides          | Greece      | GLM-F 111625                                     | MH295126 | MT332417 |
| E. leontodontis            | Leontodon hispidus              | Switzerland | TUB 012559                                       | EU233809 | MT332413 |
| E. linariae                | Linaria vulgaris                | Switzerland | BRIP: HUV 13939                                  | AY081041 | AY860054 |
| E. lobeliae                | Lobelia laxiflora               | Costa Rica  | BRIP: HUV 21049                                  | AY081042 | AY081015 |
| E. madiae                  | Madia gracilis                  | USA         | BRIP: HUV 15053                                  | AY081043 | MT332404 |
| E. magnusii                | Gnaphalium<br>uliginosum        | Sweden      | В 136207                                         | MT332211 | MT332422 |
| E. magocsyanum             | Tordylium cordatum              | Israel      | HAI 4625                                         | KF310891 | N/A      |
| E. majewskii               | Ficaria verna                   | Iran        | BRIP: HUV 14888                                  | MF924713 | HM046478 |
| E. matricariae             | Tripleurospermum<br>perforatum  | Sweden      | TUB 012101                                       | AY854979 | MT332412 |
| E. matricariae             | T. perforatum                   | Germany     | TUB 012565                                       | AY081044 | N/A      |
| E. meridionale             | Eryngium planum                 | Ecuador     | BPI 936826                                       | PQ835106 | N/A      |
| E. microsporum             | Ranunculus acris                | Germany     | GLM-F 107663                                     | MF924641 | MT332414 |
| E. parthenii               | Parthenium<br>hysterophorus     | Mexico      | XAL: A. Romero 563                               | AY854966 | MT332408 |
| E. piepenbringiae          | Ranunculus<br>polyanthemos      | Germany     | GLM-F 107690                                     | MF924698 | MT332416 |
| E. polysporum              | Ambrosia<br>artemisifolia       | Hungary     | BRIP: HUV 12228<br>(ITS)/BRIP: HUV<br>2960 (LSU) | AY081046 | AF007529 |
| E. randwijkense            | Malus × domestica<br>cv. Elstar | Netherlands | CBS 111606                                       | AY259080 | AY272033 |
| E. ranunculacearum         | Ranunculus acris                | Germany     | GLM-F 107683                                     | MF924653 | MT332415 |
| E. ranunculi-<br>scelerati | R. sceleratus                   | Germany     | GLM-F 076186                                     | MF924672 | N/A      |
| E. ranunculorum            | R. auricomus                    | Germany     | GLM-F 048093                                     | MF924638 | N/A      |
| E. ratibidae               | Ratibida pinnata                | USA         | ISC-f-0076127                                    | PV661648 | PV661653 |
| E. ratibidae               | R. pinnata                      | USA         | ISC-f-0076136                                    | PV661649 | PV661654 |
| E. ratibidae               | R. pinnata                      | USA         | ISC-f-0076147                                    | PV661650 | PV661655 |
| E. ratibidae               | R. pinnata                      | USA         | ISC-f-0076152                                    | PV661651 | PV661656 |
| E. ratibidae               | R. pinnata                      | USA         | ISC-f-0076584                                    | PV661652 | PV661657 |
| E. savchenkoi              | Ranunculus<br>paludosus         | Greece      | GLM-F 107699                                     | MF924662 | N/A      |
| E. scandicis               | Scandix verna                   | Israel      | HAI 4799                                         | KF447773 | N/A      |
| E. serotinum               | Symphytum<br>officinale         | Germany     | TUB 012605                                       | AY081048 | MT332405 |

...continued on the next page

TABLE 1. (Continued)

| Species         | Host/substrate         | Country | Voucher                     | ITS      | LSU      |
|-----------------|------------------------|---------|-----------------------------|----------|----------|
| E. thielii      | Ranunculus<br>montanus | Germany | GLM-F 107702                | MF924694 | N/A      |
| E. verruculosum | R. lanuginosus         | Italy   | GLM-F 107706                | MF924684 | N/A      |
| E. zinniae      | Zinnia peruviana       | Bolivia | LPB: M.<br>Piepenbring 2627 | AY081049 | MT332406 |

#### **Results**

#### Phylogenetic analysis

ModelTest-NG determined SYM+I+G4m+B as the best substitution model for both partitions. All sequences of *Entyloma* on *Ratibida pinnata* clustered together and formed a well-supported clade with a bootstrap of 99 (Fig. 1). Within this clade there was a further subdivision, with ISC-f-0076584 and ISC-f-0076152 for instance forming a well-supported group. The phylogenetic analysis inferred similar species relationships as in previous studies, whereby statistical support was missing in the backbone of the phylogeny. *Entyloma ratibidae* was included within a statistically well-supported group of *Entyloma* species that were mostly also isolated from Asteraceae, except for *E. belangeri* which was isolated in its anamorphic state from apple.

## Morphology

The morphology of *Entyloma* species is very simple. They have very few diagnostic morphological characteristics and the morphological differences between the species are consequently very few and vague (Lindeberg 1959). In this genus, the morphological features most commonly used for separating species are: sorus location and characteristics (*e.g.*, in the case of *Entyloma* spp. on *Ranunculus*, there is a species complex that has sori forming flat leaf spots, and another with sori forming swollen pustules on leaves; Kruse *et al.* 2018); shape, size, color, and location of the spots formed by the sori on the leaves; spore shape and sizes, and presence of a hyaline gelatinous sheath; wall characteristics; presence of an asexual morph (Vánky 2013, Denchev *et al.* 2021).

The morphological description of the studied smut fungus on *Ratibida pinnata* was based on examination of specimens from Iowa (USA). Its spores are subglobose, broadly ellipsoidal or irregular, (8.5–)9.5–13(–14) μm long, spore wall is slightly unevenly thickened, two-layered, 0.8–1.4(–1.6) μm thick.

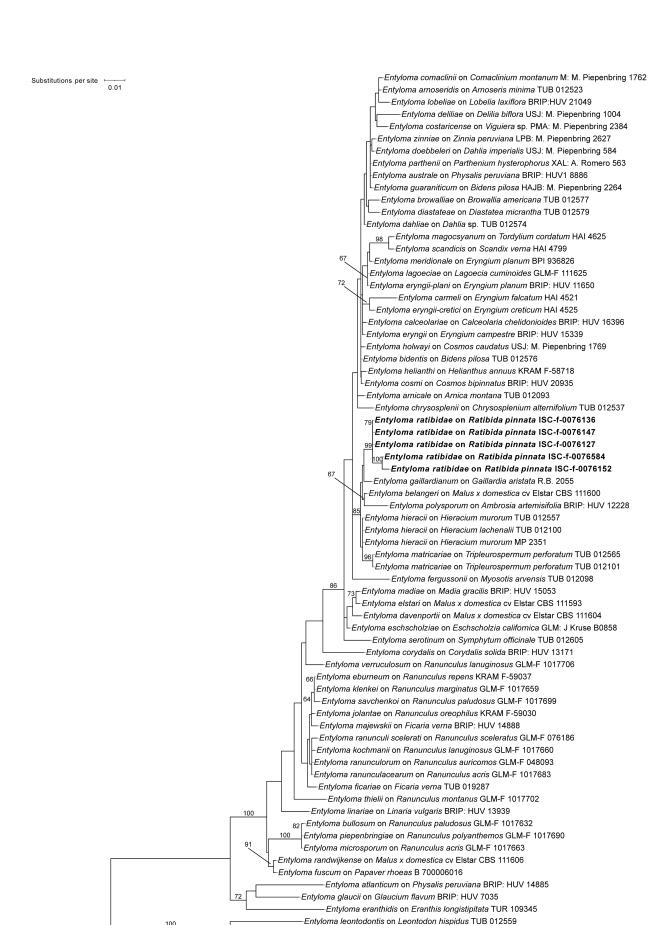
#### **Taxonomy**

It was found that the fungus on *Ratibida pinnata* is specifically associated with the host. Based on the host specialization, phylogenetic data, and comparative morphology, we propose a new species of *Entyloma* on *R. pinnata*.

Entyloma ratibidae T. Denchev, Denchev & Kemler, sp. nov. Figs 2-5

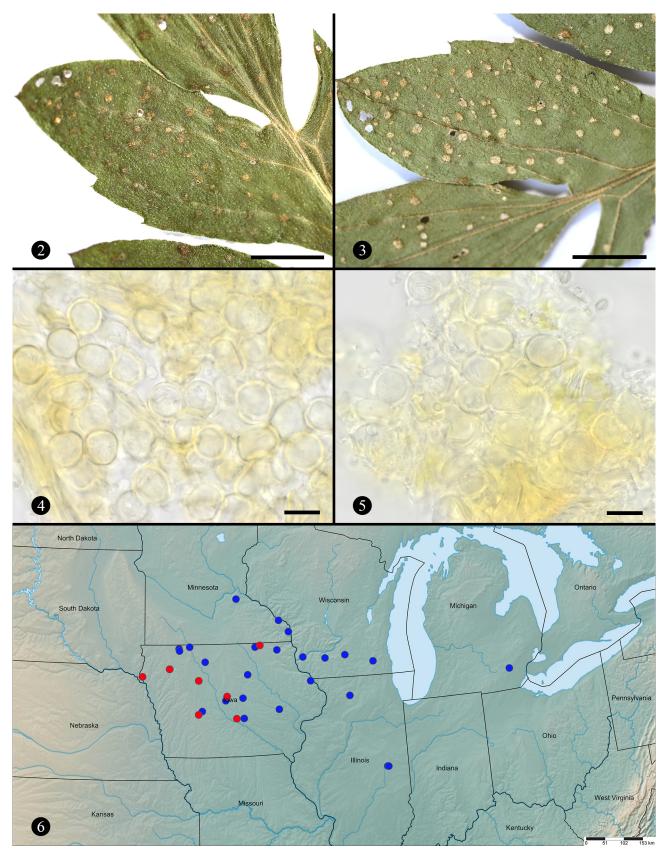
Index Fungorum number: IF 903937

**Type:**—On *Ratibida pinnata* (Vent.) Barnhart (Asteraceae). USA. Iowa: Cherokee Co., Steele Prairie State Preserve, 11 August 1997, L.H. Tiffany, s.n. (ISC 430019, **holotype**).


ITS rDNA GenBank accession no.:—PV661648, LSU rDNA GenBank accession no.:—PV661653.

ISC barcode number linking the specimen to its digital record:—ISC-f-0076127.

**Diagnosis:**— Differs from *Entyloma davisii* by having smaller spores and thinner spore walls, from *E. anceps* by having thicker spore walls, and from the other *Entyloma* species by specialization on *Ratibida pinnata*.


**Etymology:**—The epithet is derived from the host genus, *Ratibida*.

**Description:**—Sori in leaves, forming irregularly rounded spots, 0.3–4.0(–5.0) mm in length, larger by fusion, amphigenous, not limited by veins, not protruding, clay buff to reddish brown, often peripherally greenish. Spores single or crowded in groups, embedded in the leaf tissue, subglobose, broadly ellipsoidal or irregular, (8.5–)9.5–13(–14) × (7.5–)8.5–10.5(–11.5) (11.0 ± 0.9 × 9.5 ± 0.8)  $\mu$ m (n<sub>5</sub> = 500), hyaline to subhyaline; spore wall slightly unevenly thickened, two-layered, 0.8–1.4(–1.6)  $\mu$ m thick.



**FIGURE 1.** RAXML phylogeny of species in the genus Entyloma based on a MAFFT alignment of ITS and LSU rDNA sequences. Bootstrap values  $\geq 60$  are shown above branches. The phylogenetic tree was rooted with Entyloma leontodontis and E. magnusii.

Entyloma magnusii on Gnaphalium uliginosum B 136207



**FIGURES 2–6.** Entyloma ratibidae sp. nov. on Ratibida pinnata. 2–3. Habit—adaxial and abaxial leaf surfaces, respectively (from holotype). 4–5. Spores in LM (from holotype). 6. Geographic distribution of *E. ratibidae* (generated with Simple-Mappr, Shorthouse 2010): original specimens indicated by red circles, literature records—by blue circles. Scale bars: 2-3=1 mm, 4-5=10  $\mu$ m.

**Known host and distribution:**—On *Ratibida pinnata*, North America (USA—IA, IL, IN, KS, MI, MN, WI) (Fig. 6).

Additional specimens examined:—On *Ratibida pinnata*. USA. Iowa: Howard Co., Hayden Prairie State Preserve, 17 June 1998, L.H. Tiffany, s.n. (ISC 432614/ISC-f-0076582, as 'E. compositarum'); Plymouth Co., Five Ridges Prairie State Preserve, 11 August 1997, L.H. Tiffany, s.n. (ISC 430572/ISC-f-0076143, as 'E. compositarum'); Pocahontas Co., Kalsow Prairie State Preserve, 30 June 1998, L.H. Tiffany, s.n. (ISC 431534/ISC-f-0076141, as 'E. compositarum'); ditto, 14 July 1999, L.H. Tiffany, s.n. (ISC 431533/ISC-f-0076147, as 'E. compositarum'); Story Co., Doolittle Prairie State Preserve, 13 July 1998, L.H. Tiffany, s.n. (ISC 433739/ISC-f-0076584, as 'E. compositarum'); Guthrie Co., Sheeder Prairie State Preserve, 28 August 1999, L.H. Tiffany, s.n. (ISC 430876/ISC-f-0076136, as 'E. compositarum'); Jasper Co., Walnut Creek National Wildlife Refuge, 20 June 1998, L.H. Tiffany, s.n. (ISC 428946/ISC-f-0076152, as 'E. compositarum').

Based on literature sources (Fischer 1953, Greene 1954, Farr *et al.* 1989) and online specimen records (specimens not seen), *Entyloma* on *Ratibida pinnata* is also recorded from Illinois, Indiana, Kansas, Michigan, Minnesota, and Wisconsin. These records should be considered as belonging to *E. ratibidae*.

Comments:—The specimens of Entyloma ratibidae cited here were collected by Lois H. Tiffany (as 'E. compositarum') in the 1990s during her studies of the phytoparasitic fungi of Iowa tallgrass prairies (Tiffany & Knaphus 1995, 2004). Based on the similarity of the spores, E. compositarum Farl. ex G.P. Clinton was reported in the past from many plant species and genera. For example, for this fungus Fischer (1953) listed 58 host species in 26 genera only from North America. Recent treatments of Entyloma on asteraceous hosts (Vánky 2011) recognize E. compositarum as associated only with Aster L., the type host genus of this fungus. There are no molecular data for E. compositarum, but Aster belongs to tribe Astereae Cass. while Ratibida and Rudbeckia are members of tribe Heliantheae (Anderberg et al. 2007). Thirteen Entyloma species are known on 11 host genera in the Heliantheae, as follows: on Acmella Rich. ex Pers.—Entyloma spilanthis Speg., on Aldama La Llave—E. aldamae Vánky, on Ambrosia L.—E. polysporum (Peck) Farl. and E. ambrosiae-maritimae Rayss, on Delilia Spreng.—E. deliliae Vánky et al., on Echinacea Moench—E. echinaceae Vánky & McKenzie, on Helianthus L.—E. helianthi Piątek et al., on Parthenium L.—E. parthenii Syd., on Ratibida—E. polysporum, on Rudbeckia—E. davisii Cif. and E. anceps Cif., on Viguiera Kunth—E. costaricense Cif., and on Zinnia L.—E. zinniae Syd. (Vánky 2011, Rooney-Latham et al. 2017). Phylogenetic analyses show that Entyloma ratibidae is a distinct species from E. polysporum on Ambrosia, and from E. deliliae, E. helianthi, E. parthenii, E. costaricense, and E. zinniae (Fig. 1). There are no molecular data for the Entyloma species on Acmella, Aldama, Echinacea, Rudbeckia, as well as for Entyloma on Ratibida columnifera and for E. ambrosiae-maritimae. Entyloma ratibidae differs from E, spilanthis on Acmella, E. ambrosiae-maritimae and E. polysporum on Ambrosia, E. aldamae on Aldama, and E. echinaceae on Echinacea by having different spore length and/or spore wall thickness. As it was already mentioned here, Entyloma species are highly specialized fungi, parasitizing a single or only a few closely related host species, and we consider E. ratibidae to be a distinct species.

Entyloma ratibidae can easily be differentiated from *E. davisii* on *Rudbeckia hirta* L. by having smaller spores and thinner spore walls (spores 10–23 μm long and wall 2–8 μm thick, for *E. davisii*, after Vánky 2011), and from *E. anceps* on *Rudbeckia laciniata* L. by having thicker spore walls (0.5–0.8 μm thick for *E. anceps*, after Vánky 2011).

On *Ratibida columnifera*, *Entyloma polysporum* is reported from South Dakota (Fischer 1953, Vánky 2011), however, the type host genus of *E. polysporum* is *Ambrosia*. Regarding the new species on *Ratibida pinnata*, there is molecular evidence that *E. ratibidae* is distinct from *E. polysporum* (Fig. 1). Thus additional collections and molecular study are required to clarify the taxonomic status of '*Entyloma polysporum*' on *Ratibida columnifera* from USA.

#### Acknowledgements

This study was supported by the Bulgarian National Science Fund (Grant no. KP-06-N51/10/16.11.2021). T.T. Denchev and C.M. Denchev used facilities of the Institute of Biodiversity and Ecosystem Research, Bulg. Acad. Sci. upgraded in the frames of the project DiSSCo-BG (Upgrade of the Research Infrastructure 'Distributed System of Scientific Collections—Bulgaria') funded by the National Roadmap for Research Infrastructures, Ministry of Education and Science of the Republic of Bulgaria. The assistance of Curator of Ada Hayden Herbarium (ISC) at Iowa State University is kindly acknowledged.

#### References

- Anderberg, A.A., Baldwin, B.G., Bayer, R.G., Breitwieser, J., Jeffrey, C., Dillon, M.O., Eldenäs, P., Funk, V., Garcia-Jacas, N., Hind, D.J.N., Karis, P.O., Lack, H.W., Nesom, G., Nordenstam, B., Oberprieler, C., Panero, J.L., Puttock, C., Robinson, H., Stuessy, T.F., Susanna, A., Urtubey, E., Vogt, R., Ward, J. & Watson, L.E. (2007) Compositae. *In*: Kadereit, J.W. & Jeffrey, C. (Eds.) *The families and genera of vascular plants*. Vol. 8. Flowering Plants: Eudicots: Asterales. Springer, Berlin, Heidelberg, pp. 61–588. https://doi.org/10.1007/978-3-540-31051-8
- Begerow, D., Lutz, M. & Oberwinkler, F. (2002) Implications of molecular characters for the phylogeny of the genus *Entyloma*. *Mycological Research* 106: 1392–1399.
  - https://doi.org/10.1017/S0953756202006962
- Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Molecular Biology* and Evolution 17: 540–552.
  - https://doi.org/10.1093/oxfordjournals.molbev.a026334
- Chaverri, P., Goldson, N., Romberg, M.K., Dadkhahtehrani, A. & Castlebury, L.A. (2025) A new species of *Entyloma* (Entylomatales, Exobasidiomycetes) on the ornamental plant *Eryngium planum* expands the *En. eryngii* species complex. *Mycologia* 117: 435–444. https://doi.org/10.1080/00275514.2025.2460002
- Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. & Flouri, T. (2020) ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. *Molecular Biology and Evolution* 37: 291–294. https://doi.org/10.1093/molbev/msz189
- Denchev, T.T., Denchev, C.M. & Shivas, R.G. (2013) Two new *Entyloma* species (Entylomatales) from USA. *Mycobiota* 3: 35–39. https://doi.org/10.12664/mycobiota.2013.03.04
- Denchev, T.T., Denchev, C.M., Kemler, M. & Begerow, D. (2021) Entyloma eranthidis sp. nov. on Eranthis longistipitata from Uzbekistan. Mycotaxon 136: 373–385.
  - https://doi.org/10.5248/136.373
- Edler, D., Klein, J., Antonelli, A. & Silvestro, D. (2021) raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. *Methods in Ecology and Evolution* 12: 373–377. https://doi.org/10.1111/2041-210X.13512
- Farr, D.F., Bills, G.F., Chamuris, G.P. & Rossman, A.Y. (1989) Fungi on plants and plant products in the United States. APS Press, St. Paul, 1252 pp.
- Fischer, G.W. (1953) Manual of the North American smut fungi. Ronald Press Co., New York, 343 pp.
- Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. *Molecular Biology and Evolution* 27: 221–224. https://doi.org/10.1093/molbev/msp259
- Greene, H.C. (1954) Notes on Wisconsin parasitic fungi. 20. *Transactions of the Wisconsin Academy of Sciences, Arts, and Letters* 43: 165–181.
- Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* 20: 1160–1166. https://doi.org/10.1093/bib/bbx108
- Kersten, M.L., Schreiner, M.A. & Skidmore, A. (2022) *Integrated pest management (IPM) for pollinator conservation in home gardens and small farms*. Guide H-181. New Mexico State University, Las Cruces, N.M., 5 pp.
- Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* 35: 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
- Kruse, J., Piątek, M., Lutz, M. & Thines, M. (2018) Broad host range species in specialised pathogen groups should be treated with suspicion a case study on *Entyloma* infecting *Ranunculus*. *Persoonia* 41: 175–201. https://doi.org/10.3767/persoonia.2018.41.09
- Letunic, I. & Bork, P. (2021) Interactive Tree of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Research* 49: W293–W296.
  - https://doi.org/10.1093/nar/gkab301
- Lindeberg, B. (1959) *Ustilaginales* of Sweden (exclusive of the Cintractias on *Caricoideae*). *Symbolae Botanicae Upsalienses* 16 (2): 1–175.
- Liro, J.I. (1938) Die Ustilagineen Finnlands II. Annales Academiae Scientiarum Fennicae, Ser. A 42 (1): 1–720.
- Moncalvo, J.-M., Wang, H.-H. & Hseu, R.-S. (1995) Phylogenetic relationships in Ganoderma inferred from the internal transcribed

- spacers and 25S ribosomal DNA sequences. *Mycologia* 87: 223–238. https://doi.org/10.1080/00275514.1995.12026524
- O'Donnell, K. (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete *Fusarium* sambucinum (Gibberella pulicaris). Current Genetics 22: 213–220.

https://doi.org/10.1007/BF00351728

- Piątek, M., Lutz, M., Kruse, J. & Stryjak-Bogacka, M. (2024) Identification and characterization of *Entyloma eschscholziae*, a recently introduced pathogen in Europe, and its segregate *Entyloma dendromeconis* sp. nov. *Plant Pathology* 73: 57–68. https://doi.org/10.1111/ppa.13799
- Richards, E.L. (1968) A monograph of the genus Ratibida. Rhodora 70: 348–393.
- Rooney-Latham, S., Lutz, M., Blomquist, C.L., Romberg, M.K., Scheck, H.J. & Piątek, M. (2017) *Entyloma helianthi*: identification and characterization of the causal agent of sunflower white leaf smut. *Mycologia* 109: 520–528. https://doi.org/10.1080/00275514.2017.1362314
- Savchenko, K.G., Carris, L.M., Castlebury, L.A., Heluta, V.P., Wasser, S.P. & Nevo, E. (2014) Revision of *Entyloma* (Entylomatales, Exobasidiomycetes) on *Eryngium. Mycologia* 106: 797–810. https://doi.org/10.3852/13-317
- Savchenko, K.G. & Carris, L.M. (2017) Two new *Entyloma* (Entylomataceae, Basidiomycota) species on North American *Sanicula*. *Phytotaxa* 327 (2): 191–195. https://doi.org/10.11646/phytotaxa.327.2.8
- Savile, D.B.O. (1947) A study of the species of *Entyloma* on North American composites. *Canadian Journal of Research, Section C: Botanical Sciences* 25: 105–120.

https://doi.org/10.1139/cjr47c-011

- Shorthouse, D.P. (2010) SimpleMappr, an online tool to produce publication-quality point maps. Available from: http://www.simplemappr. net (accessed 25 April 2025)
- Stoll, M., Piepenbring, M., Begerow, D. & Oberwinkler, F. (2003) Molecular phylogeny of *Ustilago* and *Sporisorium* species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. *Canadian Journal of Botany* 81: 976–984. https://doi.org/10.1139/B03-094
- Thiers, B. (2025, continuously updated) *Index herbariorum: a global directory of public herbaria and associated staff.* New York Botanical Garden's virtual herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (accessed 2 March 2025)
- Tiffany, L.H. & Knaphus, G. (1995) Fungus pathogens of prairie plants in Iowa. *In*: Hartnett, D.C. (Ed.) *Proceedings of the Fourteenth North American Prairie Conference*, July 12–16, 1994. Kansas State University, Manhattan, Kansas, pp. 49–54.
- Tiffany, L.H. & Knaphus, G. (2004) Plant parasitic fungi of ten tallgrass prairies of Iowa: distribution and prevalence. *Journal of the Iowa Academy of Science* 111 (1–2): 1–42.
- Urbatsch, L.E. & Cox, P.B. (2006a) *Ratibida* Rafinesque. *In*: Flora of North America Editorial Committee (Eds.) *Flora of North America, north of Mexico* Vol. 21. Magnoliophyta: Asteridae, part 8: Asteraceae, part 3. Oxford University Press, New York, pp. 60–63.
- Urbatsch, L.E. & Cox, P.B. (2006b) *Rudbeckia* Linnaeus. *In*: Flora of North America Editorial Committee (Eds.) *Flora of North America, north of Mexico* Vol. 21. Magnoliophyta: Asteridae, part 8: Asteraceae, part 3. Oxford University Press, New York, pp. 44–60.
- Urbatsch, L.E., Baldwin, B.G. & Donoghue, M.J. (2000) Phylogeny of the coneflowers and relatives (Heliantheae: Asteraceae) based on nuclear rDNA internal transcribed spacer (ITS) sequences and choloroplast DNA restriction site data. *Systematic Botany* 25: 539–565.

https://doi.org/10.2307/2666695

- Vánky, K. (2011) Smut fungi of the world. APS Press, St. Paul, 1458 pp.
- Vánky, K. (2013) Illustrated genera of smut fungi. 3rd edn. APS Press, St. Paul, 288 pp.
- Vánky, K. & Lutz, M. (2010) Entyloma majewskii sp. nov. (Entylomataceae) on Ranunculus ficaria from Iran. Polish Botanical Journal 55: 271–279.

https://doi.org/10.1007/s12223-010-0038-6

- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: Innis, M., Gelfand, D., Shinsky, J. & White, T. (Eds.) *PCR protocols: A guide to methods and applications*. Academic Press, San Diego, pp. 315–322.
  - https://doi.org/10.1016/B978-0-12-372180-8.50042-1