

## Two new species and a new record of *Helvella* (Helvellaceae, Pezizales) from South Korea

SANG-YOUNG PARK<sup>1,5</sup>, SOHEE KIM<sup>1,6</sup>, EUNSU PARK<sup>2,7</sup>, YOUNG-NAM KWAG<sup>3,8</sup>, JU-KYEONG EO<sup>4,9\*</sup> & HWAYONG LEE<sup>1,10\*</sup>

<sup>1</sup>Department of Forest Science, Chungbuk National University, Cheongju, 28644, Republic of Korea

<sup>2</sup>Ecological Technology Research Team, Division of Ecological Applications Research, National Institute of Ecology, Seocheon, 33657, Republic of Korea

<sup>3</sup>Forest Biodiversity Division, Korea National Arboretum, Pocheon 11186, Republic of Korea

<sup>4</sup>National Ecological Survey Team, Division of Ecological Survey, National Institute of Ecology, Seocheon, 33657, Republic of Korea

<sup>5</sup> [fungux@naver.com](mailto:fungux@naver.com);  <https://orcid.org/0009-0008-5453-8902>

<sup>6</sup> [khal1480@naver.com](mailto:khal1480@naver.com);  <https://orcid.org/0009-0006-5083-4451>

<sup>7</sup> [eunsu156@naver.com](mailto:eunsu156@naver.com);  <https://orcid.org/0000-0003-4605-3661>

<sup>8</sup> [kyn0102@korea.kr](mailto:kyn0102@korea.kr);  <https://orcid.org/0000-0001-7333-2303>

<sup>9</sup> [abiesendo@gmail.com](mailto:abiesendo@gmail.com);  <https://orcid.org/0000-0001-8376-5575>

<sup>10</sup> [leehy@chungbuk.ac.kr](mailto:leehy@chungbuk.ac.kr);  <https://orcid.org/0000-0003-4526-2082>

\*Corresponding author:  [abiesendo@gmail.com](mailto:abiesendo@gmail.com),  [leehy@chungbuk.ac.kr](mailto:leehy@chungbuk.ac.kr)

### Abstract

In this study, we conducted morphological examinations and multi-locus phylogenetic analyses using ITS2, nrLSU, and *hsp90* markers on seven *Helvella* specimens collected in Korea in 2024. Our analyses confirmed the presence of six phylogenetic species, viz. including two novel species *H. griseomacropus* and *H. koreana* and one new record for Korea, *H. pseudoelastica*. The two new species formed independent clades within the *Macropus* and *Solitaria* lineages, respectively, and were clearly distinguishable from related taxa based on both morphological characteristics and molecular data. Notably, *H. koreana* formed a sister clade to *H. taiyuanensis*, but its distinct morphology and phylogenetic placement support its recognition as a new species. In addition, we secured a specimen of *H. acetabulum*, previously reported in Korea only in literature, but without any voucher specimens; its presence is now confirmed with our collection.

**Key words:** *Acetabulum* clade, Asia, *Elastica* clade, Ascomycota, Molecular phylogeny

### Introduction

Members of the genus *Helvella* (Ascomycota, Pezizales, Helvellaceae) are widely distributed in temperate and boreal regions of the Northern Hemisphere and typically occur solitarily or gregariously on soil or moss in broadleaf forests (Skrede *et al.* 2017). Depending on the species, they are either saprotrophic or ectomycorrhizal in association with trees, thus contributing to various ecological functions in forest ecosystems (Hwang *et al.* 2015). Additionally, several *Helvella* species are traded commercially in certain regions for their edible and medicinal properties (Zhao *et al.* 2016, Landeros *et al.* 2021). Given these characteristics, *Helvella* species are regarded as fungal resources with both ecological and economic value, although their economic use is limited to certain regions.

Members of *Helvella* produce apothecia in various forms, including cupulate, saddle-shaped, and irregular morphologies. Most *Helvella* species bear terete or ribbed and furrowed stipes, except for a few subsessile species that lack distinct stipes (Skrede *et al.* 2017). These macroscopic features distinguish *Helvella* from other macrofungal genera, but they are often insufficient for species delimitation within the genus. Historically, species identification has been based on macroscopic characters and microscopic structures, such as spores, paraphyses, medullary excipulum, and ectal excipulum. Numerous infrageneric classification systems have been proposed based on these traits (Dissing 1966, Weber 1972, Abbott & Currah 1997, Landeros *et al.* 2012, 2015).

Skrede *et al.* (2017) performed a multi-locus phylogenetic analysis using four genetic markers (nrLSU, *tef1- $\alpha$* , *rpb2*, and *hsp90*) on 432 specimens collected from multiple continents (mostly from Europe). Their results indicated that *Helvella* species are highly endemic to continents, suggesting a geographically restricted distribution.

Recent taxonomic studies of *Helvella* in Asia have been actively conducted, supporting the evidence of strong regional endemism within the genus. Furthermore, these studies have revealed that the species diversity of Asian *Helvella* is much higher than previously recognized (Li *et al.* 2023, Mao *et al.* 2023, Wang *et al.* 2023, Yu *et al.* 2023, Park *et al.* 2025, Ullah *et al.* 2025).

In particular, Mao *et al.* (2023) conducted a phylogenetic study using Chinese specimens and global sequences and confirmed the presence of 4 clades and 24 lineages within *Helvella*. Their analyses revealed at least 93 phylogenetic species in China, including 53 previously reported Chinese species, 5 new records for China, 18 newly described species, and 17 putatively new species requiring further study. In Korea, 202 *Helvella* specimens collected from 1986 to 2023 were analyzed, and the results were integrated with representative sequences from all clades and lineages identified by Mao *et al.* (2023) (Park *et al.* 2025). Their results showed that only 3 of the 13 previously reported Korean species were phylogenetically confirmed, while 7 species were newly described and 8 were newly recorded from Korea. Furthermore, they identified 17 putatively distinct phylogenetic species that require further study and concluded that at least 35 phylogenetic species are present in Korea.

In this study, we analyzed seven *Helvella* specimens collected in Korea during a 2024 field survey. Morphological and multilocus phylogenetic analyses confirmed that three phylogenetic species were present in each of the *Acetabulum* and *Elastica* clades. In the *Acetabulum* clade, this study confirmed the presence of *H. acetabulum*, previously reported only in literature, in Korea, and *H. koreana* was proposed as a new species. In the *Elastica* clade, *H. pseudoelastica* was proposed as a new record from Korea, and *H. griseomacropus* was proposed as a new species.

## Materials and methods

### *Fungal materials*

A total of ten *Helvella* specimens were analyzed in this study. Seven specimens were newly collected between May and August 2024, and three additional specimens collected in 2023 (KA24-1347, KA24-1348, and KA24-1349). The specimens were collected from temperate broadleaf and mixed forests, mostly on soil or mossy ground under *Quercus* and *Pinus* trees. All specimens were photographed in the field using a digital camera (Olympus OM-D E-M1 Mark III, Tokyo, Japan), and metadata, such as GPS coordinates, habitat description, collection date, and collector information, were recorded (Rathnayaka *et al.* 2025). After the specimens were taken to the laboratory in plastic collection boxes, each specimen was assigned a field collection number (KH), dried at 40 °C for 72 h, and subsequently deposited in the Korea National Arboretum with accession numbers (KA).

### *Morphology descriptions*

Morphological examinations were conducted on the ten specimens described above. Macroscopic and microscopic characteristics of the ascomata were examined following the methods of Landeros *et al.* (2015) and Skrede *et al.* (2017), including the shape and color of the apothecia, hymenium, and stipe, and microscopic features such as ascospores, asci, paraphyses, and excipular tissues. For microscopic observations, dried specimens were rehydrated by alternately soaking them in 70% ethanol and distilled water, and tissue structures were examined under a light microscope. Thirty ascospores per specimen were measured, along with 20 measurements each for other microscopic structures. Tissue sections were stained with cotton blue for microscopic observation. The overall observation protocols and format for reporting measurements followed the guidelines of Park *et al.* (2025).

### *DNA extraction, PCR amplification and sequencing*

DNA extraction, PCR amplification, and sequencing were newly performed for the seven specimens collected in 2024, while the three specimens collected in 2023 were included using the sequence data and accession numbers reported in Park *et al.* (2025). Protocols for DNA extraction, PCR, and sequencing followed the procedures described by Park *et al.* (2025). Three commonly used genetic barcode markers for *Helvella* were employed: the internal transcribed spacer (ITS), nrLSU, and *hsp90*. The nrLSU region was amplified using the primer pair H\_LSUf1/H\_LSUr2 (Landeros *et al.* 2015), and the *hsp90* region was amplified using the primer pair H\_hspf/H\_hspr (Skrade *et al.* 2017). For the ITS region, initial amplification was attempted using the ITS1/ITS4 primer pair (White *et al.* 1990). Samples that failed to amplify with this combination were re-tested using the ITS5/ITS4 primer pair (White *et al.* 1990). For samples that did not yield amplification with either pair (KA25-0479, KA25-0480, KA25-0482, and KA25-0483), partial ITS2 sequences were successfully amplified using the ITS3/ITS4 primer pair (White *et al.* 1990). The amplified PCR

products were sequenced using the Sanger method by Cosmogenetech (Daejeon, Korea). As a result, a total of eight ITS, ten nrLSU, and ten *hsp90* sequences were analyzed from the ten specimens examined in this study. All sequences were submitted to GenBank and accession numbers were obtained (Table 1).

**TABLE 1.** Korean *Helvella* species and sequences analyzed in this study. Species names in bold indicate sequences obtained from the ten specimens that were examined for both morphological and molecular phylogenetic analyses. A hyphen (–) represents data not available.

| Species name                      | Type     | Sample ID | Voucher No.               | Accession no. |          |              | Country      |
|-----------------------------------|----------|-----------|---------------------------|---------------|----------|--------------|--------------|
|                                   |          |           |                           | ITS           | LSU      | <i>hsp90</i> |              |
| <i>Dissingia oblongispora</i>     |          |           | HSA 137                   | OR355181      | OR355355 | OR366160     | China        |
| <i>Dissingia oblongispora</i>     |          |           | HSA 169                   | OR355182      | OR355356 | OR366161     | China        |
| <i>Helvella acetabuloides</i>     | holotype |           | CFSZ2044                  | OR355015      | OR355185 | MK652219     | China        |
| <i>Helvella acetabuloides</i>     |          |           | BJTC FM1264               | OR355166      | OR355337 | OR366140     | China        |
| <i>H. acetabulum</i>              |          | H134      | O-64925                   | –             | KY772985 | KY784267     | Norway       |
| <i>H. acetabulum</i>              |          | H225      | O-253212                  | –             | KY773055 | KY784344     | Norway       |
| <i>H. acetabulum</i>              | epitype  | H410      | C-F Fungi Exs. Suec. 1354 | –             | –        | KY784506     | Sweden       |
| <i>H. acetabulum</i>              |          | KH089     | KA25-0481                 | PV830655      | PV830661 | PV853822     | <b>Korea</b> |
| <i>H. alborava</i>                | holotype |           | BJTC C316-A               | OR355106      | OR355276 | OR366098     | China        |
| <i>H. alborava</i>                |          |           | BJTC C316-B               | OR355173      | OR355347 | OR366148     | China        |
| <i>H. arctoalpina</i>             |          |           | N127                      | OQ065745      | PP396828 | –            | Turkey       |
| <i>H. arctoalpina</i>             |          |           | VANF127-2                 | PQ512823      | PQ507477 | –            | Turkey       |
| <i>H. arctoalpina</i>             |          |           | VANF127-3                 | PQ512824      | PQ507478 | –            | Turkey       |
| <i>H. atroides</i>                |          |           | MFLU23-0101               | –             | OQ866058 | OQ863540     | Thailand     |
| <i>H. atroides</i>                | holotype |           | MFLU23-0102               | –             | OQ866059 | OQ863541     | Thailand     |
| <i>H. atroides</i>                |          |           | MFLU23-0103               | –             | OQ866060 | OQ863542     | Thailand     |
| <i>H. elastica</i>                |          | H066      | O-253311                  | –             | KY772950 | KY784230     | Sweden       |
| <i>H. fistulosa</i>               |          |           | MFLU23-0096               | –             | OQ866053 | OQ863535     | Thailand     |
| <i>H. fistulosa</i>               |          |           | MFLU23-0097               | –             | OQ866054 | OQ863536     | Thailand     |
| <i>H. fistulosa</i>               |          |           | MFLU23-0098               | –             | OQ866055 | OQ863537     | Thailand     |
| <i>H. griseomacropus</i> sp. nov. |          | H41       | KA16-0551                 | PP545146      | PP544953 | –            | Korea        |
| <i>H. griseomacropus</i> sp. nov. |          | H59       | KA20-0060                 | PP545162      | PP544970 | –            | Korea        |
| <i>H. griseomacropus</i> sp. nov. |          | H72       | KA21-1232                 | PP545173      | PP544981 | –            | Korea        |
| <i>H. griseomacropus</i> sp. nov. |          | KH027     | KA24-1348                 | PP545244      | PP545067 | PP782836     | <b>Korea</b> |
| <i>H. griseomacropus</i> sp. nov. |          | KH028     | KA24-1349                 | PP545245      | PP545068 | PP782837     | <b>Korea</b> |
| <i>H. griseomacropus</i> sp. nov. | holotype | KH099     | KA25-0485                 | –             | PV830665 | PV853826     | <b>Korea</b> |
| <i>H. griseomacropus</i> sp. nov. |          | N39       | NIBRFG0000511082          | PP545198      | PP545015 | –            | Korea        |
| <i>H. griseomacropus</i> sp. nov. |          | N40       | NIBRFG0000511110          | PP545199      | PP545016 | –            | Korea        |
| <i>H. griseomacropus</i> sp. nov. |          | N48       | NIBRFG0000513941          | PP545205      | PP545022 | –            | Korea        |
| <i>H. koreana</i> sp. nov.        | holotype | KH087     | KA25-0479                 | PV830653      | PV830659 | PV853820     | <b>Korea</b> |
| <i>H. koreana</i> sp. nov.        |          | KH088     | KA25-0480                 | PV830654      | PV830660 | PV853821     | <b>Korea</b> |
| <i>H. macropus</i>                |          | H238      | O-291425                  | –             | KY773067 | KY784356     | Norway       |

.....continued on the next page

TABLE 1. (Continued)

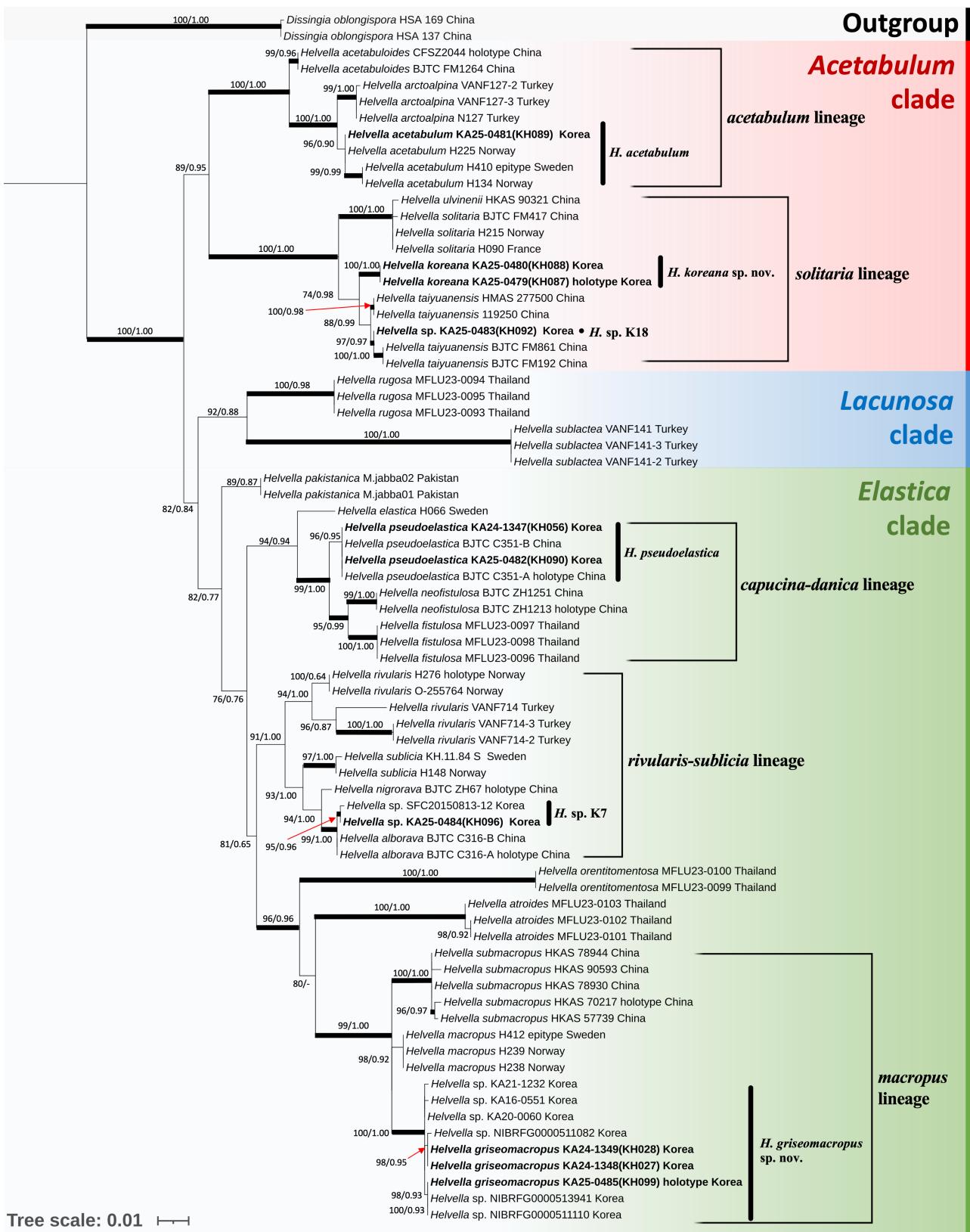
| Species name               | Type     | Sample ID | Voucher No.               | Accession no. |          |          | Country      |
|----------------------------|----------|-----------|---------------------------|---------------|----------|----------|--------------|
|                            |          |           |                           | ITS           | LSU      | hsp90    |              |
| <i>H. macropus</i>         |          | H239      | O-291391                  | -             | KY773068 | -        | Norway       |
| <i>H. macropus</i>         | epitype  | H412      | C-F Fungi Exs. Suec. 3266 | -             | -        | KY784507 | Sweden       |
| <i>H. neofistulosa</i>     | holotype |           | BJTC ZH1213               | OR355059      | OR355229 | OR366056 | China        |
| <i>H. neofistulosa</i>     |          |           | BJTC ZH1251               | OR355060      | OR355230 | OR366057 | China        |
| <i>H. nigrorava</i>        | holotype |           | BJTC ZH67                 | OR355105      | OR355275 | OR366097 | China        |
| <i>H. orientitomentosa</i> | holotype |           | MFLU23-0099               | -             | OQ866056 | OQ863538 | Thailand     |
| <i>H. orientitomentosa</i> |          |           | MFLU23-0100               | -             | OQ866057 | OQ863539 | Thailand     |
| <i>H. pakistanica</i>      | holotype |           | M.jabba01                 | PQ410250      | -        | -        | Pakistan     |
| <i>H. pakistanica</i>      |          |           | M.jabba02                 | PQ410251      | -        | -        | Pakistan     |
| <i>H. pseudoelastica</i>   |          | KH056     | KA24-1347                 | -             | PP545094 | PP782860 | <b>Korea</b> |
| <i>H. pseudoelastica</i>   |          | KH090     | KA25-0482                 | PV830656      | PV830662 | PV853823 | <b>Korea</b> |
| <i>H. pseudoelastica</i>   | holotype |           | BJTC C351-A               | OR355170      | OR355341 | OR366143 | China        |
| <i>H. pseudoelastica</i>   |          |           | BJTC C351-B               | OR355174      | OR355348 | OR366149 | China        |
| <i>H. rivularis</i>        |          | H1978     | O-255764                  | MN656175      | MN655850 | MN692371 | Norway       |
| <i>H. rivularis</i>        | holotype | H276      | C-F-59447                 | -             | -        | KY784391 | Norway       |
| <i>H. rivularis</i>        |          |           | VANF714                   | PP359562      | PP396830 | -        | Turkey       |
| <i>H. rivularis</i>        |          |           | VANF714-2                 | PQ512821      | PQ507475 | -        | Turkey       |
| <i>H. rivularis</i>        |          |           | VANF714-3                 | PQ512822      | PQ507476 | -        | Turkey       |
| <i>H. rugosa</i>           |          |           | MFLU23-0093               | -             | OQ866050 | OQ863532 | Thailand     |
| <i>H. rugosa</i>           |          |           | MFLU23-0094               | -             | OQ866051 | OQ863533 | Thailand     |
| <i>H. rugosa</i>           |          |           | MFLU23-0095               | -             | OQ866052 | OQ863534 | Thailand     |
| <i>H. solitaria</i>        |          | H090      | O-253371                  | -             | KY772959 | KY784241 | France       |
| <i>H. solitaria</i>        |          | H215      | O-253379                  | -             | KY773047 | KY784336 | Norway       |
| <i>H. solitaria</i>        |          |           | BJTC FM417                | OR355131      | OR355302 | OR366120 | China        |
| <i>H. sp. K18</i>          |          | KH092     | KA25-0483                 | PV830657      | PV830663 | PV853824 | <b>Korea</b> |
| <i>H. sp. K7</i>           |          | KH096     | KA25-0484                 | PV830658      | PV830664 | PV853825 | <b>Korea</b> |
| <i>H. sp. K7</i>           |          | S07       | SFC20150813-12            | PP545213      | PP545030 | -        | Korea        |
| <i>H. sublactea</i>        |          |           | VANF141                   | PP359561      | PP396829 | -        | Turkey       |
| <i>H. sublactea</i>        |          |           | VANF141-2                 | PQ512819      | PQ507473 | -        | Turkey       |
| <i>H. sublactea</i>        |          |           | VANF141-3                 | PQ512820      | PQ507474 | -        | Turkey       |
| <i>H. sublicia</i>         |          | H148      | O-70080                   | -             | KY772997 | KY784281 | Norway       |
| <i>H. sublicia</i>         |          |           | KH.11.84(S)               | -             | MK100273 | MK179403 | Sweden       |
| <i>H. submacropus</i>      | holotype |           | HKAS 70217                | KX506977      | KX506932 | OR220563 | China        |
| <i>H. submacropus</i>      |          |           | HKAS 78944                | -             | KX506934 | OR220561 | China        |
| <i>H. submacropus</i>      |          |           | HKAS 78930                | KX506978      | KX506933 | OR220562 | China        |
| <i>H. submacropus</i>      |          |           | HKAS 57739                | KX506980      | KX506935 | OR220560 | China        |
| <i>H. submacropus</i>      |          |           | HKAS 90593                | KX506982      | KX506937 | OR220559 | China        |
| <i>H. taiyuensis</i>       |          |           | HMAS 277500               | MK592152      | MK592105 | MK652216 | China        |
| <i>H. taiyuensis</i>       |          |           | 119250                    | MK592151      | MK592104 | MK652215 | China        |
| <i>H. taiyuensis</i>       |          |           | BJTC FM192                | OR355167      | OR355338 | OR366141 | China        |
| <i>H. taiyuensis</i>       |          |           | BJTC FM861                | OR355168      | OR355339 | OR366142 | China        |
| <i>H. ulvinenii</i>        |          |           | HKAS 90321                | -             | KU167483 | OR366155 | China        |

### Phylogenetic analyses

The newly obtained sequences from this study were first checked for quality, assembled, and compared using the BLASTn search engine to identify the most similar publicly available sequences. The top matches corresponded to sequences previously published by Skrede *et al.* (2017), Mao *et al.* (2023), Li *et al.* (2023), and Park *et al.* (2025), and these sequences were used as references in subsequent phylogenetic analyses.

Sequence alignment and editing were conducted using Geneious Prime 2023.2 (<https://www.geneious.com>). Alignments were performed using MAFFT v7.490 (Katoh *et al.* 2002, Katoh & Standley 2013), followed by manual trimming to remove ambiguous or low-confidence regions. For ITS sequences, the trimmed region was adjusted to match the ITS3/ITS4 amplification range. Each locus (ITS2, nrLSU, and *hsp90*) was aligned separately, and both single-locus and concatenated datasets were prepared for phylogenetic analyses.

Phylogenetic trees were inferred using the maximum likelihood (ML) analysis was conducted using IQ-TREE v2.3.6 (Nguyen *et al.* 2015). The best-fit substitution models for each dataset were determined based on the Bayesian Information Criterion using ModelFinder (Kalyaanamoorthy *et al.* 2017). The optimal partitioning scheme was selected using the integrated PartitionFinder2 algorithm (Lanfear *et al.* 2017) implemented in IQ-TREE. TPM2u+F+G4 for the ITS2 region, TN+F+I+R2 for LSU, and K2P+G4 for *hsp90*. For the concatenated dataset, TPM2u+F+G4 was applied to ITS (1–238 bp) and TN+F+I+R2 was applied to LSU (239–888 bp) and K2P+G4 was applied to *hsp90* (889–1105 bp). Ultrafast bootstrap (Hoang *et al.* 2018) with 1,000 replicates was used to assess branch support and generate the consensus tree. Bayesian inference (BI) analyses were performed using MrBayes v3.2.7 (Ronquist *et al.* 2012) on both the concatenated ITS–nrLSU–*hsp90* dataset and individual single-locus datasets. The GTR + G substitution model was applied, with all model parameters unlinked across partitions. Two independent runs, each consisting of four Markov chain Monte Carlo (MCMC) chains, were executed for 2,000,000 generations, sampling every 1,000 generations. Convergence was assessed by monitoring the average standard deviation of split frequencies (< 0.01) and confirming that potential scale reduction factors (PSRF) approached 1.0. The first 25 % of sampled trees were discarded as burn-in, and the remaining trees were used to construct a 50 % majority-rule consensus tree with posterior probability (PP) values. Clades with ultrafast bootstrap (UFBoot) support values  $\geq 95\%$  and Bayesian posterior probability (PP) values  $> 0.95$  were considered strongly supported. The resulting trees were visualized using iTOL v6 (Letunic & Bork 2024).


## Results

### Phylogenetic analyses

A total of 171 sequences representing 26 species were included in the phylogenetic analysis (Fig. 1). The aligned length of each locus was as follows: ITS2, 238 bp (47 sequences); nrLSU, 650 bp (69 sequences); and *hsp90*, 217 bp (55 sequences). The final concatenated alignment consisted of 74 sequences with a total length of 1,105 bp. The concatenated dataset comprised 285 distinct alignment patterns, 262 parsimony-informative sites, and 13 singleton sites. The optimal log-likelihood of the dataset was  $-4492.908$ , and the proportion of undetermined characters or gaps was 18.36%. Detailed phylogenetic information for each single-locus dataset is provided in Supplementary Table 1 (Table S1). The ML and BI analyses yielded similar topologies; therefore, only the ML tree is presented, with UFBoot and PP support values indicated on branches (UFBoot/PP).

Three major clades were recognized in the phylogenetic analyses, and the ten specimens analyzed in this study were placed within the *Acetabulum* and *Elastica* clades. In the *Acetabulum* lineage, KA25-0481 formed a monophyletic group with *H. acetabulum* (UFBoot=96, PP=0.90). In the *Solitaria* lineage, KA25-0483 clustered with *H. taiyuanensis* (UFBoot=88, PP=0.99), whereas KA25-0479 and KA25-0480 formed a well-supported independent branch (UFBoot=100, PP=1), representing *H. koreana*.

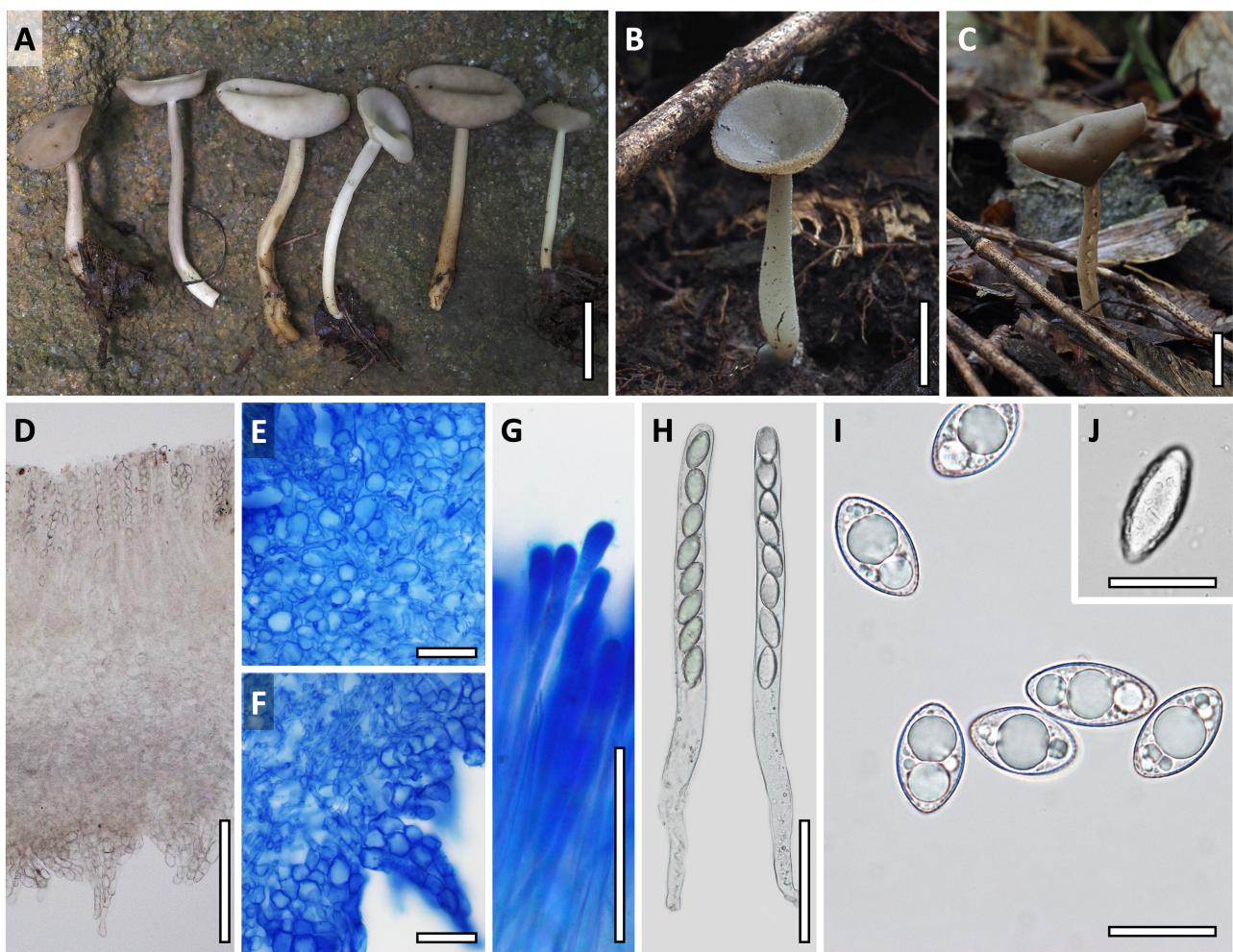
The remaining six specimens were placed within three distinct lineages of the *Elastica* clade. In the *Capucina–Danica* lineage, KA25-0482 formed a monophyletic group with *H. pseudoelastica* (UFBoot=96, PP=0.95). In the *Rivularis–Sublicia* lineage, KA25-0484 formed a well-supported monophyletic branch with *H. alborava* (UFBoot=99, PP=1). In the *Macropus* lineage, KA25-0485 formed a robust independent branch along with *H. sp. K17* specimens (UFBoot=100, PP=1), which represent *H. griseomacropus*.



**FIGURE 1.** Phylogenetic tree of Korean *Helvella* species constructed using maximum likelihood (ML) and Bayesian inference (BI) analyses based on concatenated ITS, nrLSU, and *hsp90* sequences. Numbers on branches indicate ML ultrafast bootstrap (UFBoot) and Bayesian posterior probability (PP) support values (UFBI/PP). Bold branches indicate strongly supported clades with UFBoot  $\geq 95\%$  and PP  $> 0.95$ . Species names in bold represent specimens examined in this study.

## Taxonomy

*Helvella griseomacropus* S.Y. Park & H. Lee, sp. nov. (Fig. 2)


MycoBank: MB#859720

**Etymology:** The name *griseomacropus* is derived from *griseo-*, meaning gray, and *macropus*, referring to its resemblance to *Helvella macropus*.

**Diagnosis:** Very similar to *Helvella submacropus*, but differs by the presence of a distinct subhymenium layer and longer ascospores.

**Type:** SOUTH KOREA, Chungcheongbuk-do, Yeongdong-gun, Sangchon-myeon, Mulhan-ri, San 50-1, elev. 551 m, 7 August 2024, S.Y. Park, KH099 (KA25-0485, holotype).

**Apothecia** stipitate-cupulate. **Cap** 0.5–2.0 cm high, 1.2–4.0 cm broad, cup-shaped to discoid, occasionally laterally compressed, margin even to reflexed, free from stipe. **Hymenium** pale gray or brownish gray when fresh, becoming brownish when dried, surface smooth. **Receptacle surface** concolorous with hymenium, inconspicuously pubescent. **Stipe** 2.3–9.0 cm high, 0.2–0.5 cm broad, pale grey to grey, tapering upwards, sometimes brownish tint at the base, pubescent, terete, sometimes with one or more longitudinal grooves.



**FIGURE 2.** Morphological characteristics of *Helvella griseomacropus* sp. nov. **A–C** Fruit bodies; **A:** KA25-0485 (KH099), **B:** KA24-1348 (KH027), **C:** KA24-1349 (KH028). **D** Vertical section of apothecium of KA25-0485 in water. **E** Subhymenium of KA25-0485 in cotton blue. **F** Medullary and ectal excipulum of KA25-0485 in cotton blue. **G** Paraphyses of KA25-0485 in cotton blue. **H** Ascii of KA24-1349 in water. **I** Ascospores of KA25-0485 in water. **J** Warted spore of KA24-1349 in water. Scale bars: **A–C** = 1 cm; **D** = 200  $\mu$ m; **E–H** = 50  $\mu$ m; **I–J** = 20  $\mu$ m.

**Ectal excipulum** 60–100  $\mu$ m broad, of *textura globulosa-angularis*, 17.4–35.3  $\times$  14–25.6  $\mu$ m. **Outermost cells** 80–210  $\mu$ m broad, drum-shaped, 13.2–41.1  $\times$  7.9–18.9  $\mu$ m. **Medullary excipulum** 150–240  $\mu$ m broad, of *textura intricata*, hyphae 3–5.8  $\mu$ m. **Subhymenium** 30–170  $\mu$ m broad, of *textura globulosa-intricata*. **Asci** (204.6–) 239.8–242.4 (–310)  $\times$  (13–) 14.9–15.1 (–18.6)  $\mu$ m, pleurohynchous, subcylindrical, eight-spored. **Ascospores** [90/3/3 in  $H_2O$ ]

(20.8–) 23.3–24.3 (–26.7) × (10.3–) 11.3–11.7 (–12.5)  $\mu\text{m}$ , ellipsoid to broadly ellipsoid, subfusoid, smooth, hyaline, [Q (1.85–) 2.03–2.13 (–2.36),  $Q_{\text{av}}$   $2.08 \pm 0.15$ ]. **Paraphyses** 3–4.3  $\mu\text{m}$ , filiform, septate, hyaline. **Apex of paraphyses** 5.4–9.9  $\mu\text{m}$

**Habitat and known distribution:** Solitary or scattered on the ground in broad-leaved forest.

**Additional specimen examined:** SOUTH KOREA, Jeju, Jeju-si, 1100-ro 2073, elev. 1,055 m, 9 July 2023, S.Y. Park, KH027 (KA24-1348), SOUTH KOREA, Jeju, Jeju-si, 1100-ro 2073, elev. 1,055 m, 9 July 2023, S.Y. Park, KH028 (KA24-1349)

**Notes:** In the phylogenetic analysis, sequences of *Helvella griseomacropus* formed an independent branch with strong support within the *Macropus* lineage. *Helvella macropus* and *Helvella submacropus* were represented as the most closely related taxa. One of the distinct traits of *H. griseomacropus* is its grey-colored ascomata, which distinguishes it from *H. macropus*, whose ascomata are yellowish-brown to pale greyish-brown (Dissing 1966). *H. submacropus* is very similar to *H. griseomacropus* in many traits, including color, size, and microscopic features; however, several notable differences were observed. The color of *H. griseomacropus* is paler than that of *H. submacropus*, and its apothecia are more plane to discoid in shape (Fig. 2B), rather than shallowly cupulate as in *H. submacropus* (Li *et al.* 2023). Microscopically, *H. griseomacropus* has a distinct subhymenial layer composed of *textura globulosa-intricata*. In addition, the ascospores of *H. griseomacropus* are longer (20.8–26.7 × 10.3–12.5  $\mu\text{m}$  vs. 17–23 × 10–13  $\mu\text{m}$ ), and the average Q value (length/width ratio) is markedly higher than in *H. submacropus* ( $2.08 \pm 0.15$  vs.  $1.73 \pm 0.12$ ).

***Helvella koreana* S.Y. Park & H. Lee, sp. nov. (Fig. 3)**

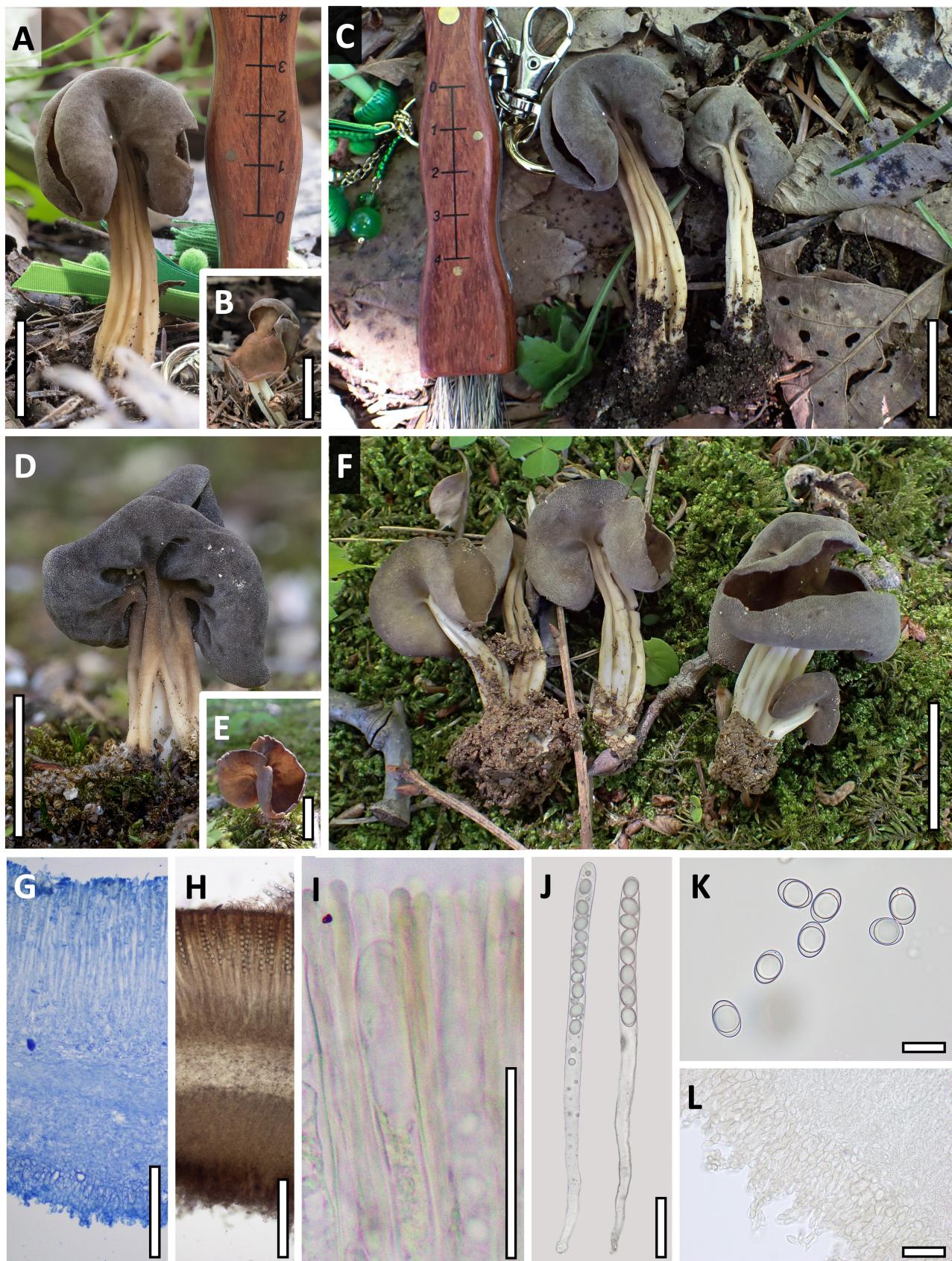
MycoBank: MB#859722

**Etymology:** The specific epithet *koreana* refers to the type locality, Korea.

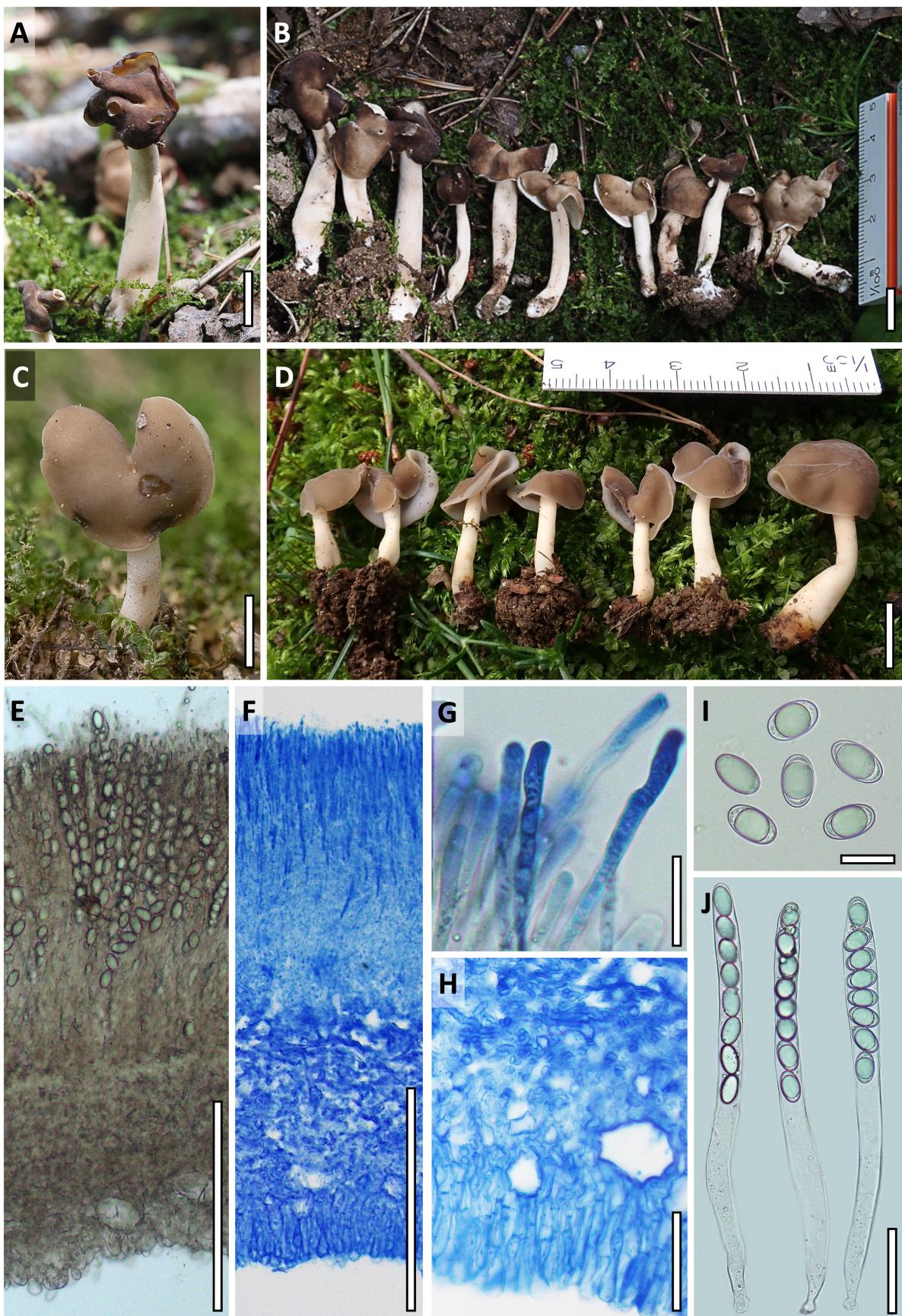
**Diagnosis:** Similar to *Helvella solitaria*, which has compressed cup-shaped to cup-shaped apothecia at maturity, but the apothecia of *Helvella koreana* remain persistently compressed cup-shaped throughout development.

**Type:** SOUTH KOREA, Gyeonggi-do, Paju-si, Jori-eup, Samneung-ro 89, elev. 28 m, 13 May 2024, S.Y. Park & H.P. Choi, KH087 (KA25-0479, **holotype**).

**Apothecia** stipitate-cupulate. **Cap** 1.0–3.5 cm high, 1.3–3.6 cm broad, laterally compressed cup-shaped, margin deflexed to even, free from stipe. **Hymenium** grayish brown to dark brown. surface smooth. **Receptacle surface** concolorous with the hymenium, covered with whitish tufts. blunt ribs nearly absent or covering approximately one–third of the receptacle surface. **Stipe** 1.0–5.2 cm high, 0.3–1.3 cm broad, cream to white at the base, gradually becoming dark brown toward the apex and concolorous with the receptacle surface, tapering upwards, glabrous but covered with tufts at the apex, ribbed and furrowed, ribs blunt, exhibiting both single- and double-edged forms, with anastomosis present.


**Ectal excipulum** 70–110  $\mu\text{m}$  broad, of *textura angularis*, 10.4–28.4 × 6.3–21.6  $\mu\text{m}$ . **Outermost cells** 40–100  $\mu\text{m}$  broad, club-shaped, 9.4–25.1 × 6.2–13.1  $\mu\text{m}$ . **Medullary excipulum** 360–490  $\mu\text{m}$  broad, of *textura intricata*, hyphae 2.4–5  $\mu\text{m}$ . **Asci** (266.1–) 310.4–313.2 (–356.1) × (13.8–) 16.2–16.4 (–20.7)  $\mu\text{m}$ , pleurohynchous, subcylindrical, eight-spored. **Ascospores** [60/2/2 in  $\text{H}_2\text{O}$ ] (17.8–) 19.6–20 (–22.1) × (13–) 14.6–15 (–16)  $\mu\text{m}$ , ellipsoid to broadly ellipsoid, smooth, hyaline, [Q (1.15–) 1.32–1.36 (–1.55),  $Q_{\text{av}}$   $1.34 \pm 0.08$ ]. **Paraphyses** 2.2–4.9  $\mu\text{m}$ , clavate, septate, yellowish-brown. **Apex of paraphyses** 4.3–8.5  $\mu\text{m}$ .

**Habitat and known distribution:** Scattered on moss or soil in broad-leaved or mixed forests.


**Additional specimen examined:** SOUTH KOREA, Gyeonggi-do, Paju-si, Jori-eup, Samneung-ro 89, elev. 28 m, 13 May 2024, S.Y. Park & H.P. Choi, KH088 (KA25-0480).

**Notes:** *Helvella koreana* belongs to the *Solitaria* lineage and forms a sister relationship with *Helvella taiyuanensis* in the phylogenetic tree. However, morphologically it shows a closer resemblance to *Helvella solitaria*. The apothecia of *H. koreana* remain laterally compressed cup-shaped throughout development, whereas those of *H. taiyuanensis* are irregular to saddle-shaped, and *H. solitaria* develops from a compressed form when young to a regular cup shape at maturity.

Ascospore dimensions of *H. koreana* (17.8–22.1 × 13–16  $\mu\text{m}$ ) are comparable to those of *H. solitaria* (19–24 × 12–15  $\mu\text{m}$ ) (Dissing 1966), but larger than those of *H. taiyuanensis* (15–18.9 × 11.3–13.4  $\mu\text{m}$ ) (Liu 1985). The stipe of *H. koreana* is cream to white and glabrous, becoming concolorous with the receptacle surface toward the apex and bearing scattered tufts. In contrast, *H. solitaria* has a whitish to grayish-white stipe, and *H. taiyuanensis* is white to cream, both showing uniform coloration from base to apex, with *H. taiyuanensis* bearing a single rounded longitudinal ridge (Wang *et al.* 2019).



**FIGURE 3.** Morphological characteristics of *Helvella koreana* sp. nov. **A–F** Fruit bodies; A–C: KA25-0479 (KH087), D–F: KA25-0480 (KH088). **G** Vertical section of apothecium of KA25-0479 in cotton blue. **H** Vertical section of apothecium of KA25-0480 in water. **I** Paraphyses of KA25-0480 in water. **J** Asci of KA25-0479 in water. **K** Ascospores of KA25-0479 in water. **L** Medullary and ectal excipulum of KA25-0480 in water. Scale bars: A–C = 2 cm; D–F = 1 cm; G–H = 200  $\mu$ m; I–J = 50  $\mu$ m; K = 20  $\mu$ m; L = 50  $\mu$ m.



**FIGURE 4.** Morphological characteristics of *Helvella pseudoelastica*. **A–D** Fruit bodies; A–B: KA24-1347 (KH056), C–D: KA25-0482 (KH090). **E** Vertical section of apothecium of KA24-1347 in water. **F** Vertical section of apothecium of KA25-0482 in cotton blue. **G** Paraphyses of KA24-1347 in cotton blue. **H** Medullary and ectal excipulum in cotton blue. **I** Ascospores of KA24-1347 in water. **J** Asci of KA24-1347 in water. Scale bars: A–D = 1 cm; E–F = 200 µm; G = 20 µm; H = 50 µm; I = 20 µm; J = 50 µm.

**Apothecia** stipitate-captitate. **Cap** 0.6–1.6 cm high, 0.6–2.0 cm broad, saddle-shaped, bilobate, occasionally irregularly lobed, margin deflexed to even. **Hymenium** beige to brown, glabrous, smooth, becoming brown when dry. **Receptacle surface** grayish white to white. **Stipe** 1–3 cm high, 0.3–0.6 cm broad, white to yellowish white, terete.

**Ectal excipulum** 40–80  $\mu\text{m}$  broad, of *textura angularis*, 21–42  $\times$  14.2–24.5  $\mu\text{m}$ , occasionally with large globose cells in the inner layer. **Outermost cells** 20.2–44  $\times$  10.4–17.7  $\mu\text{m}$ , elongate club-shaped. **Medullary excipulum** 130–180  $\mu\text{m}$  broad, of interwoven *textura intricata*, hyphae 3–4.7  $\mu\text{m}$ . **Ascii** (256.6–) 268.6–274.8 (–297.1)  $\times$  (14.1–) 16.9–17.7 (–22.1)  $\mu\text{m}$ , pleurohynchous, subcylindrical, eight-spored. **Ascospores** [30/1/1 in  $\text{H}_2\text{O}$ ] (17.4–) 19.4–20.8 (–22.9)  $\times$  (12.2–) 12.6–13.2 (–14.4)  $\mu\text{m}$ , ellipsoid to broadly ellipsoid, smooth, hyaline, [Q (1.3–) 1.51–1.61 (–1.79), Qav 1.56  $\pm$  0.12]. **Paraphyses** 2.6–4.7  $\mu\text{m}$ , filiform, septate, pale brown. **Apex of paraphyses** 6.2–7.6  $\mu\text{m}$ .

**Habitat and known distribution:** Solitary on mossy ground in mixed forests.

**Specimen examined:** SOUTH KOREA, Gangwon-do, Taebaek-si, Hwangji-dong 25-2, elev. 688 m, 22 July 2023, S.Y. Park, KH056 (KA24-1347). SOUTH KOREA, Gangwon-do, Taebaek-si, Hwangji-dong 25-2, elev. 688 m, 23 July 2024, S.Y. Park, KH090 (KA25-0482).

**Notes:** Specimen KA24-1347 was collected in 2023, and KA25-0482 was collected from the same locality in 2024. The collection site was a well-lit mixed forest park located in a high-altitude area, where the specimens were found scattered on moss under trees. Both specimens shared common morphological characteristics, including small, compressed apothecia (Fig. 4A–D) and the occasional presence of large, globose cells in the ectal excipulum (Fig. 4E, H).

Notably, KA25-0482 exhibited no development of asci in any of the apothecia, even in mature specimens, and no developing asci were observed.

## Discussions

*Helvella griseomacropus* formed an independent branch within the *Macropus* lineage, which is defined by the shared derived traits of stipitate-cupulate apothecia and subfusoid ascospores (Mao *et al.* 2023), distinguishing it from other members of the *Elastica* clade. Our morphological observations confirmed that *H. griseomacropus* shares synapomorphic traits. Although it resembles *Helvella macropus* and *Helvella submacropus* but it differs in several aspects (Table 2). *H. macropus* is characterized by a yellowish-brown to pale grayish-brown hymenium (Dissing 1966), whereas *H. griseomacropus* exhibits a gray to pale grayish coloration with little to no brown hue. *H. submacropus* is very similar to *H. griseomacropus*, but the latter has an overall paler ascocarp and less conspicuous pubescence on the stipe and receptacle surfaces (Li *et al.* 2023).

*Helvella koreana* formed an independent branch within the *Solitaria* lineage, as a sister group to *H. taiyuanensis*. Despite its close phylogenetic relationship to *H. taiyuanensis* and *H. solitaria*, it shows morphological differences (Table 3). For instance, *H. solitaria* develops cup-shaped apothecia that become laterally compressed over time (Dissing 1966), whereas *H. koreana* exhibits laterally compressed cup-shaped apothecia throughout its developmental stage. *H. koreana* also differs from *H. taiyuanensis* in several morphological aspects: the hymenium of *H. koreana* is grayish brown to dark brown, and the receptacle surface is sometimes covered by ribs extending up to one-third of its area, whereas in *H. taiyuanensis*, ribs do not extend onto the receptacle surface (Liu 1985). In addition, *H. koreana* consistently produces slightly larger ascospores (17.8–22.1  $\times$  13–16  $\mu\text{m}$ ) than *H. taiyuanensis* (15–18.9  $\times$  11.3–13.4  $\mu\text{m}$ ).

*Helvella pseudoelastica* was suggested to occur in South Korea by Mao *et al.* (2023), based on the Korean specimen KA12-1701, whose ITS sequence (KR673633) was identical to that of *H. pseudoelastica*, although it had been previously identified as *Helvella cf. elastica* by Kim *et al.* (2015). In this study, KA24-1347 and KA25-0482 formed a strongly supported monophyletic group with *H. pseudoelastica*, supporting the hypothesis that *H. pseudoelastica* may occur in South Korea (Fig. 1). However, these specimens exhibited several morphological differences from the original description of the species. According to the original description of *H. pseudoelastica* by Mao *et al.* (2023), the hymenium is grayish white and turns yellowish when dried, whereas the Korean specimens displayed a beige to brown hymenium that became brown upon drying. Particularly, stipe coloration showed a marked difference: the original description noted distinct pinkish tints at the stipe base as a characteristic feature of the species, which were not

observed in the Korean specimens (Fig. 4A–D). Such morphological discrepancies are comparable to those reported for *H. fistulosa* (Skrede *et al.* 2017, Yu *et al.* 2023, Park *et al.* 2025). In the original description of *H. fistulosa*, the stipe occasionally exhibited a reddish-brown color upon drying (Skrede *et al.* 2017). A subsequent report from Thailand described the stipe as white to cream, which becomes yellowish when dried (Yu *et al.* 2023). In Korea, *H. fistulosa* is generally observed with white to cream-colored stipes, but some specimens exhibit a distinctly reddish tint at the base (Park *et al.* 2025). This degree of phenotypic variation suggests that these traits may vary depending on the environmental conditions or locality.

**TABLE 2.** Morphological comparison among *Helvella griseomacropus*, *H. macropus*, and *H. submacropus*.

|                     | <i>Helvella griseomacropus</i>                                                                                                                                          | <i>Helvella submacropus</i>                                                                                                                                                               | <i>Helvella macropus</i>                                                                                                                                             |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apothecia           | 0.5–2.0 cm high, 1.2–4.0 cm broad, cup-shaped to discoid, occasionally laterally compressed                                                                             | 0.5–1.5 cm high, 1–3 cm broad, shallowly cupulate to cupulate                                                                                                                             | 2.0–3.0 cm broad, deep, regular cupulate                                                                                                                             |
| Hymenium            | pale gray or brownish gray when fresh, becoming brownish when dried                                                                                                     | greyish to pale grey when fresh, yellowish when dried                                                                                                                                     | yellowish-brown to pale greyish-brown                                                                                                                                |
| Receptacle surface  | concolorous with hymenium, inconspicuously pubescent                                                                                                                    | greyish when fresh, becoming yellowish when dried, villose to densely pubescent                                                                                                           | concolorous with hymenium or grey, villose                                                                                                                           |
| Stipe               | 2.3–9.0 cm high, 0.2–0.5 cm broad, pale grey to grey, tapering upwards, sometimes brownish tint at the base, pubescent, sometimes with one or more longitudinal grooves | 4–7 cm long, 0.2–0.6 cm broad, light brown or grey brown at upper and middle parts, and pale yellow to yellow brown at base, villose to densely pubescent, slightly sulcate near the base | 2.5–4.0 cm high, 0.3–0.5 cm broad, concolorous with outside, but often gradually becoming whitish below, thickened near the base and often compressed above, villose |
| Subhymenium         | <i>Textura globulosa-intricata</i>                                                                                                                                      | —                                                                                                                                                                                         | very variable in thickness                                                                                                                                           |
| Medullary excipulum | <i>Textura intricata</i> , hyphae 3–5.8 $\mu$ m                                                                                                                         | <i>Textura intricata</i> , hyphae 3–6 $\mu$ m                                                                                                                                             | <i>Textura intricata</i> , hyphae 3–5 $\mu$ m                                                                                                                        |
| Ectal excipulum     | <i>Textura globulosa-angularis</i> , innermost cells 17.4–35.3 $\times$ 14–25.6 $\mu$ m                                                                                 | <i>Textura angularis</i> , innermost cells 17–35 $\times$ 8–13 $\mu$ m                                                                                                                    | <i>Textura angularis</i> , innermost cells 10–30 $\mu$ m broad                                                                                                       |
| Asci                | 204.6–310 $\times$ 13–18.6 $\mu$ m                                                                                                                                      | 230–270 $\times$ 15–20 $\mu$ m                                                                                                                                                            | 13–18 $\mu$ m broad                                                                                                                                                  |
| Ascospores          | 20.8–26.7 $\times$ 10.3–12.5 $\mu$ m                                                                                                                                    | 17–23 $\times$ 10–13 $\mu$ m                                                                                                                                                              | 19–24 $\times$ 12–15 $\mu$ m                                                                                                                                         |
| Q value             | 2.08 $\pm$ 0.15                                                                                                                                                         | 1.73 $\pm$ 0.12                                                                                                                                                                           | —                                                                                                                                                                    |
| Paraphyses          | 3–4.3 $\mu$ m broad, apex 5.4–9.9 $\mu$ m                                                                                                                               | 4–5 $\mu$ m broad, apex 8–11 $\mu$ m                                                                                                                                                      | 5–7 $\mu$ m broad                                                                                                                                                    |
| Habitat             | Solitary or scattered on the ground in broad-leaved forest                                                                                                              | Scattered or gregarious on the ground, under <i>Quercus</i> sp. and <i>Pinus</i> sp. forest.                                                                                              | on calcareous soil, often gregarious.                                                                                                                                |
| References          | This study                                                                                                                                                              | Li <i>et al.</i> 2023                                                                                                                                                                     | Dissing 1966                                                                                                                                                         |

Given that *H. pseudoelastica* belongs to the same clade (*Capucina-Danica* lineage) as *H. fistulosa*, it is plausible that this species also exhibits phenotypic plasticity. Indeed, the original description acknowledged the possibility that the presence or absence of such color traits may not be diagnostic, emphasizing the need to examine additional

specimens to confirm their taxonomic significance (Mao *et al.* 2023). Despite the variation in macroscopic features, the microscopic traits of the Korean specimens were consistent with those described in the original description (Mao *et al.* 2023).

*Helvella acetabulum* was previously reported in South Korea based on morphological identification (Kim *et al.* 2004). However, Park *et al.* (2025) found no matching specimens among 202 collections made between 1986 and 2023. In this study, the specimen KA24-0481, collected in 2024, formed a monophyletic group with *H. acetabulum* and exhibited identical morphological features (Harmaja 1977). Therefore, this study confirmed that this species exists not only in the literature but also in South Korea (Fig. 5A–C).

In the phylogenetic analysis, KA25-0484 formed a strongly supported clade (UFB=99, PP=1) with *H. alborava*, including *H. sp. K7* (SFC20150813-12), whereas KA25-0483 showed relatively weak support (UFB=88, PP=0.99) as a clade with *H. taiyuanensis*. These specimens were not formally described due to the limited material, each represented by a single ascoma (Fig. 5D–F).

In conclusion, this study suggests that *H. griseomacropus* and *H. koreana* are new species within the genus *Helvella*, and confirms the presence of *H. acetabulum* in Korea. Increasing the species richness of *Helvella* species could serve as a valuable resource for promoting the development and utilization of the genus.

**TABLE 3.** Morphological comparison among *Helvella koreana*, *H. taiyuanensis*, and *H. solitaria*.

|                     | <i>Helvella koreana</i>                                                                                                                                                                                               | <i>Helvella taiyuanensis</i>                                                                                          | <i>Helvella solitaria</i>                                                                                  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Apothecia           | 1.0–3.5 cm high, 1.3–3.6 cm broad, laterally compressed cup-shaped throughout development                                                                                                                             | 3.5–5 cm broad, irregular or saddle-shaped, with margin always free                                                   | 1–4 cm, initially compressed, becoming regular cup-shaped at maturity                                      |
| Hymenium            | Grayish brown to dark brown                                                                                                                                                                                           | Dark brown to blackish                                                                                                | Greyish-brown, dark brownish when dried                                                                    |
| Receptacle surface  | Concolorous with hymenium, covered with whitish tufts; blunt ribs nearly absent or covering approx. one-third of surface                                                                                              | Gray to dark gray-brown, smooth, sparsely pubescent                                                                   | upper surface concolorous with hymenium, lower part pale grayish-brown to whitish, pubescent, blunt absent |
| Stipe               | 1.0–5.2 cm high, 0.3–1.3 cm broad, cream to white at base, dark brown toward apex, concolorous with receptacle; tapering upwards, glabrous, but pubescent near apex; ribs blunt, single/double-edged with anastomosis | 2–3 high, 0.8–1.5 cm broad, white to cream, yellowish brown when dry, solid, with a single rounded longitudinal ridge | 1–2.5 cm high, whitish to grayish-white, with 2–5 regular blunt ribs                                       |
| Medullary excipulum | <i>Textura intricata</i> , hyphae 2.4–5 $\mu\text{m}$                                                                                                                                                                 | <i>Textura intricata</i> , hyphae 3–11 $\mu\text{m}$                                                                  | <i>Textura intricata</i> , hyphae 3–5 $\mu\text{m}$                                                        |
| Ectal excipulum     | <i>Textura angularis</i> , innermost cells 10.4–28.4 $\times$ 6.3–21.6 $\mu\text{m}$                                                                                                                                  | —                                                                                                                     | <i>Textura angularis</i> , innermost cells 30–45 $\times$ 6–21 $\mu\text{m}$                               |
| Asci                | 266.1–356.1 $\times$ 13.8–20.7 $\mu\text{m}$                                                                                                                                                                          | 13–15 $\mu\text{m}$ broad                                                                                             | 13–15 $\mu\text{m}$ broad                                                                                  |
| Ascospores          | 17.8–22.1 $\times$ 13–16 $\mu\text{m}$                                                                                                                                                                                | 15–18.9 $\times$ 11.3–13.4 $\mu\text{m}$                                                                              | 19–24 $\times$ 12–15 $\mu\text{m}$                                                                         |
| Paraphyses          | 2.2–4.9 $\mu\text{m}$ broad, apex 4.3–8.5 $\mu\text{m}$                                                                                                                                                               | 3.5–4 $\mu\text{m}$ broad, apex 7 $\mu\text{m}$                                                                       | 5–7 $\mu\text{m}$ broad                                                                                    |
| Habitat             | On moss or soil in broad-leaved or mixed forests                                                                                                                                                                      | On the ground in forest                                                                                               | on calcareous soil, often gregarious.                                                                      |
| References          | This study                                                                                                                                                                                                            | Liu 1985                                                                                                              | Dissing 1966                                                                                               |



**FIGURE 5.** Fruiting bodies of *Helvella* species not covered in this study. **A–C** Fruit body of *H. acetabulum* (KA25-0481, KH089). **D** Fruit body of *H. cf. alborava* (KA25-0484, KH096). **E–F** Fruit body of *H. cf. taiyuanensis* (KA25-0483, KH092). Scale bars: A = 1 cm; B = 2 cm; C–F = 1 cm.

## Acknowledgments

This study was supported with funds from the National Institute of Ecology under project No. NIE-A-2025-01 and the Ministry of Environment of Korea as a part of basic ecological research.

## References

Abbott, S.P. & Currah, R.S. (1997) The *Helvellaceae*: systematic revision and occurrence in northern and northwestern North America. *Mycotaxon* 62: 1–125.  
<https://doi.org/10.7939/R3TD9NG3F>

Dissing, H. (1966) The genus *Helvella* in Europe with special emphasis on the species found in Norden. *Dansk Botanisk Arkiv* 25:

Harmaja, H. (1977) A revision of the *Helvella* acetabulum group (Pezizales) in Fennoscandia. *Karstenia* 17: 45–58.  
<https://doi.org/10.29203/ka.1977.124>

Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Systematic biology* 42 (2): 182–192.  
<https://doi.org/10.1093/sysbio/42.2.182>

Hoang, D.T., Chernomor, O., Von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. *Molecular biology and evolution* 35 (2): 518–522.  
<https://doi.org/10.1093/molbev/msx281>

Hwang, J., Zhao, Q., Yang, Z.L., Wang, Z. & Townsend, J.P. (2015) Solving the ecological puzzle of mycorrhizal associations using data from annotated collections and environmental samples—an example of saddle fungi. *Environmental Microbiology Reports* 7: 658–667.  
<https://doi.org/10.1111/1758-2229.12303>

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature methods* 14 (6): 587–589.  
<https://doi.org/10.1038/nmeth.4285>

Katoh, K., Misawa, K., Kuma, K.I. & Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic acids research* 30 (14): 3059–3066.  
<https://doi.org/10.1093/nar/gkf436>

Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution* 30: 772–780.  
<https://doi.org/10.1093/molbev/mst010>

Kim, Y.S., Seok, S.J., Lee, K.H., Kim, W.K., Won, H.Y., Hyeon, K.S., Ha, S.K., Kim, S.P., Sim, K.M. & Lee, Y.S. (2004) Synthetic management of wild mushroom resources. In: Test research report: agricultural environment research, pp. 551–596.

Kim, C.S., Jo, J.W., Kwag, Y.N., Sung, G.H., Lee, S.G., Kim, S.Y., Shin, C.H. & Han, S.K. (2015) Mushroom flora of Ulleung-gun and a newly recorded *Bovista* species in the Republic of Korea. *Mycobiology* 43 (3): 239–257.  
<https://doi.org/10.5941/MYCO.2015.43.3>

Landeros, F., Iturriaga, T. & Guzmán-Dávalos, L. (2012) Type studies in *Helvella* (Pezizales) 1. *Mycotaxon* 119: 35–63.  
<https://doi.org/10.5248/119.35>

Landeros, F., Iturriaga, T., Rodríguez, A., Vargas-Amado, G. & Guzmán-Dávalos, L. (2015) Advances in the phylogeny of *Helvella* (Fungi: Ascomycota), inferred from nuclear ribosomal LSU sequences and morphological data. *Revista Mexicana de Biodiversidad* 86: 856–871.  
<https://doi.org/10.1016/j.rmb.2015.09.005>

Landeros, F., Ferrusca-Rico, F.M., Guzman-Davalos, L., ESQUIVEL-NARANJO, E.U., Matias-Ferrer, N., Burrola-Aguilar, C., Viurcos-Martinez, G. & Garibay-Orijel, R. (2021) *Helvella jocatoi* sp. nov. (Pezizales, Ascomycota), a new species from *H. lacunosa* complex with cultural importance in central Mexico Abies religiosa forests. *Phytotaxa* 498: 1–11.  
<https://doi.org/10.11646/phytotaxa.498.1.1>

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Molecular biology and evolution* 34: 772–773.  
<https://doi.org/10.1093/molbev/msw260>

Letunic, I. & Bork, P. (2024) Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. *Nucleic acids research* 52 (W1): W78–W82.  
<https://doi.org/10.1093/nar/gkae268>

Li, T.S., Zhou, D.Q., Zhao, Q. & Zhang, Y. (2023) A new addition to the *Helvella macropus* group (Helvellaceae) from Southwestern China. *Phytotaxa* 613 (1): 39–46.  
<https://doi.org/10.11646/phytotaxa.613.1.3>

Liu, B., Du, F. & Cao, J.Z. (1985) New species and new combination of the genus *Helvella*. *Acta Mycologica Sinica* 4: 208–217.

Mao, N., Xu, Y.Y., Zhang, Y.X., Huang, X.B., Hou, C.L. & Fan, L. (2023) Phylogeny and species diversity of the genus *Helvella* with emphasis on eighteen new species from China. *Fungal Systematics and Evolution* 12 (1): 111–152.  
<https://doi.org/10.3114/fuse.2023.12.08>

Nguyen, L.T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Molecular biology and evolution* 32 (1): 268–274.  
<https://doi.org/10.1093/molbev/msu300>

Park, S.Y., Sohee, K., Eunjin, K., Eo, J.K. & Lee, H. (2025) Taxonomic Revision of Korean Saddle Fungi (*Helvella*, Helvellaceae).

*Mycobiology* 53 (1): 79–112.

<https://doi.org/10.1080/12298093.2024.2440172>

Rathnayaka, A.R., Tennakoon, D.S., Jones, G.E., Wanasinghe, D.N., Bhat, D.J., Priyashantha, A.H., Stephenson, S.L., Tibpromma, S. & Karunaratna, S.C. (2025) Significance of precise documentation of hosts and geospatial data of fungal collections, with an emphasis on plant-associated fungi. *New Zealand Journal of Botany* 63 (2–3): 462–489.  
<https://doi.org/10.1080/0028825X.2024.2381734>

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic biology* 61 (3): 539–542.  
<https://doi.org/10.1093/sysbio/sys029>

Skrede, I., Carlsen, T. & Schumacher, T. (2017) A synopsis of the saddle fungi (*Helvella*: Ascomycota) in Europe - species delimitation, taxonomy and typification. *Persoonia* 39: 201–253.  
<https://doi.org/10.3767/persoonia.2017.39.09>

Ullah, M., Rehman, U., Ahmad, I., Ullah, F., Akram, W., Maula, F. & Saba, M. (2025) *Helvella pakistanica* (Helvellaceae, Ascomycota), New Species from Khyber Pakhtunkhwa, Pakistan. *Biology Bulletin Reviews* 15 (2): 306–311.  
<https://doi.org/10.1134/S2079086424601236>

Wang, X.C., Liu, T.Z., Chen, S.L., Li, Y. & Zhuang, W.Y. (2019) A four-locus phylogeny of rib-stippled cupulate species of *Helvella* (Helvellaceae, Pezizales) with discovery of three new species. *MycoKeys* 60: 45.  
<https://doi.org/10.3897/mycokeys.60.38186>

Wang, X.C., Zhuang, W.Y. & Zhao, R.L. (2023) Species Diversity of *Helvella lacunosa* Clade (Pezizales, Ascomycota) in China and Description of Sixteen New Species. *Journal of Fungi* 9: 697.  
<https://doi.org/10.3390/jof9070697>

Weber, N.S. (1972) The genus *Helvella* in Michigan. *The Michigan Botanist* 11: 147–201.

White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: *PCR protocols: a guide to methods and applications*, vol. 18. pp. 315–322.  
<https://doi.org/10.1016/b978-0-12-372180-8.50042-1>

Yu, F.M., Lei, L. & Zhao, Q. (2023) Four New Additions to *Helvella* (Helvellaceae, Pezizales) from Northern Thailand. *Frontiers in Microbiology* 14: 1182025.  
<https://doi.org/10.3389/fmicb.2023.1182025>

Zhao, Q., Sulayman, M., Zhu, X.-T., Zhao, Y.-C., Yang, Z.-L. & Hyde, K.D. (2016) Species clarification of the culinary Bachu mushroom in western China. *Mycologia* 108: 828–836.  
<https://doi.org/10.3852/16-002>