





https://doi.org/10.11646/phytotaxa.446.3.1

# Morpho-molecular characterization of two novel amphisphaeriaceous species from Yunnan, China

# LAKMALI S. DISSANAYAKE<sup>1,7</sup>, MILAN C. SAMARAKOON<sup>2,3,8</sup>, PETER E. MORTIMER<sup>4,9</sup>, YONG-ZHONG LU<sup>5,10</sup>, QI-RUI LI<sup>6,11</sup>, KEVIN D. HYDE<sup>2,12</sup> & JI-CHUAN KANG<sup>1,13\*</sup>

<sup>1</sup>Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang, Guizhou Province 550025, China.

<sup>2</sup> Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.

<sup>3</sup> Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

<sup>4</sup> Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.

<sup>5</sup> School of Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province 550025, China.

<sup>6</sup> Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou Province 550025, China.

7 statistics of the second state of the second

<sup>8</sup> samare.ag.rjt@gmail.com; <sup>6</sup> https://orcid.org/0000-0002-4815-125X

<sup>9</sup> setermortimer@mac.com; bttps://orcid.org/0000-0003-3188-9327

<sup>10</sup> szlu86@gmail.com; https://orcid.org/0000-0002-1033-5782

<sup>11</sup> Iqrnd2008@163.com; https://orcid.org/0000-0001-8735-2890

<sup>12</sup> stdhyde3@gmail.com; https://orcid.org/0000-0002-2191-0762

<sup>13</sup> *ickang@gzu.edu.cn; https://orcid.org/0000-0002-6294-5793* 

\**Corresponding author:* <u>jckang@gzu.edu.cn</u>

### Abstract

Amphisphaeria yunnanensis sp. nov. and Lepteutypa qujingensis sp. nov. are introduced in this study from dead twigs collected from an evergreen broadleaf forest area in Yunnan Province, China. Both species have immersed, subglobose ascomata and overlapping uniseriate asci and multi-guttulate, fusiform, brown ascospores. Amphisphaeria yunnanensis is distinguished among similar taxa in having long and narrow ostiole and comparatively small fusiform ascospores. Lepteutypa qujingensis is characterized by smaller ascomata and ascospores compare to other Lepteutypa species. Based on LSU-ITS phylogeny and macro-micro morphology, both species are placed in Amphisphaeriaceae. Morphological comparisons of the accepted species in Amphisphaeria and Lepteutypa are provided.

Keywords: 2 new species, Amphisphaeriaceae, phylogeny, taxonomy

### Introduction

Amphisphaeriaceae G. Winter was introduced by Winter (1884–1886) with its type genus *Amphisphaeria* Ces. & De Not., and has been transferred between Amphisphaeriales D. Hawksw. & O.E. Erikss. and Xylariales Nannf. according to different author arguments (e.g. Senanayake *et al.* 2015, Jaklitsch *et al.* 2016). Kirk *et al.* (2008) accepted Amphisphaeriaceae under Xylariales with 32 genera and 499 species. Following consecutive morpho-molecular and evolutionary studies by Senanayake *et al.* (2015), Samarakoon *et al.* (2016) and Hongsanan *et al.* (2017) Amphisphaeriaceae was placed in Amphisphaeriales. The latest update of Sordariomycetes by Hyde *et al.* (2020) accepted Amphisphaeriaceae is in Amphisphaeriales (Xylariomycetidae O.E. Erikss. & Winka) including 17 families.

In a morpho-molecular study, Senanayake *et al.* (2015) accepted *Amphisphaeria* as the only genus in Amphisphaeriaceae while transferring other genera to different families in Xylariomycetidae, viz., Iodosphaeriaceae O. Hilber, Phlogicylindriaceae Senan. & K.D. Hyde and Sporocadaceae Corda (= Bartaliniaceae Wijayaw. *et al.*). Maharachchikumbura *et al.* (2016) and Jaklitsch *et al.* (2016) accepted only *Amphisphaeria* and *Lepteutypa* Petr. in Amphisphaeriaceae based on morpho-molecular studies. However, several outlines of fungi have been accepted three

genera *Amphisphaeria*, *Griphosphaerioma* Höhn. and *Lepteutypa* in Amphisphaeriaceae (Wijayawardene *et al.* 2018, 2020, Hyde *et al.* 2020).

*Amphisphaeria* is typified by *A. umbrina* (Fr.) De Not. with coelomycetous asexual morph (Samuels *et al.* 1987, Barr 1990, Hyde *et al.* 1996, Kang *et al.* 1999a, b, 2002). *Amphisphaeria* species are characterized by unitunicate asci, J+ or J- subapical ring and two-celled, light brown to dark brown ascospores (Barr 1975, Wang *et al.* 2004). Based on morphological characterization, Wang *et al.* (2004) accepted 12 *Amphisphaeria* species from 170 type material examined, while other species were placed in other genera mostly in Dothideomycetes. In addition, several recent studies have also been focused on *Amphisphaeria* based only on morphology i.e. *A. doidgeae* Marinc. et al., and morpho-molecular studies i.e. *A. acericola* Senan. et al., *A. flava* Samarak. & K.D. Hyde, *A. mangrovei* Devadatha & V.V. Sarma, *A. sorbi* Senan. & K.D. Hyde and *A. thailandica* Samarak. & K.D. Hyde (Marincowitz *et al.* 2008, Liu *et al.* 2015, Phookamsak *et al.* 2019, Samarakoon *et al.* 2019, Senanayake *et al.* 2019). Eighteen *Amphisphaeria* species are accepted by Hyde *et al.* (2020) among >190 species epithets listed in Index Fungorum (http: www.indexfungorum. org).

As compared to *Amphisphaeria*, there is less attention on fresh collection and molecular data of *Griphosphaerioma* and *Lepteutypa*. Two *Griphosphaerioma* species as *G. kansensis* Ellis & Everh. and *G. zelkovicola* Yas. Ono & Tak. Kobay have been described so far with lack of molecular data (Ono & Kobayashi 2003).

Lepteutypa is typified by L. fuckelii G.H. Otth (Petrak et al. 1923). Jaklitsch et al. (2016) proposed a neotype for L. fuckelii, a new combination of L. uniseptata K.M. Tsui and a novel species, L. sambuci Jaklitsch & Voglmayr based on morpho-molecular study. Luo et al. (2019) introduced L. aquatica Z.L Luo et al. from freshwater habitat. Fifteen Lepteutypa species are listed in Index Fungorum (http: www.indexfungorum.org) and only five species (L. aquatica, L. fuckeli, L. sambuci and L. uniseptata) have sequence data (Hyde et al. 2020).

Based on morphology and molecular studies, *Amphisphaeria yunnanensis* and *Lepteutypa qujingensis sp. nov.* are introduced with descriptions, illustrations and morphological comparisons.

# Materials and methods

### Sample collection, isolation and morphological studies

Fresh materials were collected from a broadleaf evergreen forest area in Qujing, Yunnan Province, China (1618 m elevation) in May 2019. Specimens were placed in paper bags and carried to the laboratory. Ascomata were observed through a stereo microscope (SZX16, Olympus). Hand sectioning was carried out for observing internal characters. Microscopic characters were examined using a Nikon H5505 compound microscope. Sections were mounted in sterile water and measurements were recorded. Melzer's reagent was used to observe apical apparatus of asci. Average values were calculated for all the measurements and presented as ((minimum-maximum)  $\bar{x}$  = average, n = number of observations). Photomicrography was conducted using a Canon EOS70D digital camera fitted to the microscope. Measurements were made with the Tarosoft (R) Image Frame Work software and images used in figures were processed with Adobe Photoshop CS6 software (Adobe Systems, USA).

Single spore isolation was done according to Chomnunti *et al.* (2014) and germinating spores were transferred to potato dextrose agar (PDA). The pure cultures were incubated at 20–25 °C for 4 weeks. The type specimens were deposited in the Cryptogamic Herbarium, Kunming Institute of Botany, Academia Sinica (HKAS), Chinese Academy of Science, Kunming and Chinese Academy of Science Herbarium (HMAS), Beijing, China. Ex-type cultures were deposited in the Kunming Institute of Botany Culture Collection (KUMCC), Chinese Academy of Science, Kunming and China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. Facesoffungi and Index Fungorum numbers were provided as outlined in Jayasiri *et al.* (2015) and Index Fungorum (http: www.indexfungorum.org) respectively. The detailed host, substrate and geographical locations of accepted species in both *Amphisphaeria* and *Lepteutypa* are provided in Tables 3 and 4.

# DNA extraction and PCR amplification

Fungal isolates were grown on PDA for 3–4 weeks at 25 °C and total genomic DNA was extracted from 50 to 100 mg of axenic mycelium scraped from the edges of the growing cultures (Wu *et al.* 2001). DNA extraction was followed by using the EZgne<sup>™</sup> fungal gDNA kit (BIOMIGA, Hangzhou city, Zhejiang Province, China), according to the

manufacturer's protocol. DNA extracts were stored at -4 °C for use in regular work and duplicated at -20 °C for long term storage.

DNA sequence data was obtained from the partial sequences of two ribosomal coding genes including internal transcribed spacer region (ITS: ITS1-5.8S-ITS2) and 28S large subunit rDNA (LSU). ITS was amplified using primers ITS5 and ITS4 (White *et al.* 1990). LSU was amplified using primers LR0R and LR5 (Vilgalys & Hester 1990). Polymerase chain reaction (PCR) was carried out in a volume of 25  $\mu$ l which contained 9.5  $\mu$ L of ddH<sub>2</sub>O, 12.5  $\mu$ L of 2X PCR Master Mix (2x Bench Top<sup>TM</sup> Taq Master Mix, BIOMIGA, China), 1  $\mu$ L of DNA template and 1  $\mu$ L of forward and reverse primers (10  $\mu$ M each) in each reaction. PCR thermal cycle program for all gene amplifications were as follows: initialization of 95 °C for 5 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 50 s and elongation at 72 °C for 90 s, and final extension at 72 °C for 10 min. Purification and sequencing of PCR products were done by Sangon Biotech, Shanghai, China.

| Species                            | Culture collection/ Specimen number | LSU                  | ITS                  | Reference                                              |
|------------------------------------|-------------------------------------|----------------------|----------------------|--------------------------------------------------------|
| A. acericola                       | MFLU 16-2479                        | MK640424             | MK640423             | Senanayake et al. 2019                                 |
| A. flava                           | MFLUCC 18-0361*                     | MH971234             | MH971224             | Samarakoon et al. 2019                                 |
| A. mangrovei                       | NFCCI-4247*                         | MG844275             | MG844283             | Phookamsak et al. 2019                                 |
| A. sorbi                           | MFLUCC 13-0721*                     | KP744475             | KR092797             | Liu <i>et al.</i> 2015                                 |
| A. thailandica                     | MFLU 18-0794*                       | MH971235             | MH971225             | Samarakoon et al. 2019                                 |
| A. umbrina                         | HKUCC 994                           | AF452029             | AF009805             | Jeewon et al. 2003                                     |
| A. yunnanensis                     | KUMCC 19-0188*                      | MN556306             | MN477177             | This study                                             |
| A. yunnanensis                     | KUMCC 19-0189                       | MN550992             | MN550997             | This study                                             |
| Amphisphaeria acericola            | MFLUCC14-0842*                      | MF614131             | MF614128             | Senanayake et al. 2019                                 |
| Beltrania pseudorhombica           | CBS 138003*                         | KJ869215             | KJ869158             | Crous et al. 2014                                      |
| Beltraniella endiandrae            | CBS 137976*                         | KJ869185             | KJ869128             | Crous et al. 2014                                      |
| Beltraniopsis neolitseae           | CBS 137974*                         | KJ869183             | KJ869126             | Crous et al. 2014                                      |
| Lepteutypa aquatica<br>L. fuckelii | MFLUCC 14–0045*<br>CBS140409*       | MK835805<br>KT949902 | MK828607<br>KT949902 | Luo <i>et al.</i> 2019<br>Jaklitsch <i>et al.</i> 2016 |
| L. fuckelii                        | WU 33555                            | KT949903             | KT949903             | Jaklitsch et al. 2016                                  |
| L. qujingensis                     | KUMCC 19-0187*                      | MN556316             | MN477033             | This study                                             |
| L. qujingensis                     | KUMCC 19-0186                       | MN707567             | MN707568             | This study                                             |
| L. sambuci                         | CBS 131707*                         | KT949904             | KT949904             | Jaklitsch et al. 2016                                  |
| L. sambuci                         | WU 33558                            | KT949906             | KT949906             | Jaklitsch et al. 2016                                  |
| L. sambuci                         | WU 33558                            | KT949905             | KT949905             | Jaklitsch et al. 2016                                  |
| L. uniseptata                      | HKUCC 6349*                         | DQ810219             | N/A                  | Bahl et al. 2004                                       |

TABLE 1. Taxa used in the phylogenetic analyses and their corresponding GenBank accession numbers.

Types strains are indicated with (\*) and newly generated sequences in this study are in bold. Unavailable sequence is indicated by "N/A". Abbreviations: *CBS*—Centra albureau voor Schimmel cultures, Utrecht, The Netherlands; *HKUCC*—University of Hong Kong Culture Collection, Department of Ecology and Biodiversity, Hong Kong, China; *KUMCC*—Kunming Institute of Botany Culture Collection, Chinese Academy of Science, Kunming, China; *MFLUCC*—Mae Fah Luang University Herbarium, Chiang Rai, Thailand; *MFLUCC*—Mae Fah Luang University Culture Collection, Chinag Rai, Thailand, *NFCCI*—National fungal culture collection of India; *WU*—Herbarium of the Institute of Botany, University of Vienna, Austria.

#### Molecular phylogenetic analyses

The sequence data generated in this study were analyzed with closely related taxa retrieved from GenBank (Table 1) based on BLASTn searches (https://www.ncbi.nlm.nih.gov) and recently published data (Samarakoon *et al.* 2019). Phylogenetic analyses were constructed based on ITS and LSU sequence data. The single gene alignments were automatically generated with MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html; Katoh *et al.* 2017), and were improved manually when necessary in BioEdit v. 7.0.5.2 (Hall 1999). ITS and LSU alignments were used to perform model test in MrModeltest 2.3 to estimate the best-fit evolutionary model under the Akaike information criterion (AIC) (Nylander 2004). Ambiguous regions were excluded from the analyses and gaps were treated as missing data.

Maximum likelihood analyses (ML) were performed using RAxMLGUI v. 1.3 (Silvestro & Michalak 2012) single and combined alignments. The optimal ML trees were obtained with 1,000 separate runs under the GTR + I + GAMMA substitution model resulting from model tests. Bayesian inference was performed using MrBayes on XSEDE tool in CIPRES (Larget & Simon 1999, Huelsenbeck & Ronquist 2001, Ronquist *et al.* 2012). Maximum-parsimony (MP) analysis was carried by using PAUP v. 4.0b10 (Swofford 2002). Each MP analyses were carried out with the heuristic search option and 1000 replicates. The Kishino-Hasegawa tests were performed to determine whether trees were significantly different (Kishino & Hasegawa 1989). Descriptive tree statistics for parsimony such as; the tree length (TL), consistency indices (CI), retention indices (RI), rescaled consistency indices (RC) and homoplasy index (HI) were documented. Posterior probabilities (PP) were obtained from Markov Chain Monte Carlo Sampling (BMCMC) (Rannala & Yang 1996, Ronquist *et al.* 2012) when the average standard deviation of split frequencies fell below 0.01. Markov Chain Monte Carlo (MCMC) chains were run from random trees for 1,000,000 generations and sampled every 100<sup>th</sup> generations with the burning value of 25%. The remaining trees were used to calculate PP values. All trees were visualized in FigTree v1.4.0 (Rambaut 2012) and the final layout was done with Microsoft PowerPoint. The final alignment and tree were registered in TreeBASE under the submission ID. 25669 (http://www.treebase.org/).

#### Results

### Phylogenetic analyses

The combined LSU-ITS matrix consisted of 18 strains of Amphisphaeriaceae and three outgroup taxa in Beltraniaceae. The alignment contained 1358 characters (LSU: 1–836, ITS: 837–1358) including alignment gaps. The MP analysis resulted a single most parsimonious tree (TL = 435, CI = 0.674, RI = 0.701, CR = 0.472, HI = 0.326). The best scoring RAxML tree was selected to represent the relationships among taxa with a final likelihood value of –4231.272884 (Figure 1). The matrix had distinct alignment patterns with 7.2% of undetermined characters or gaps. Estimated base frequencies were as A = 0.256306, C = 0.213596, G = 0.266979, T = 0.263118; and substitution rates as AC = 0.633815, AG = 2.906967, AT = 1.264086, CG = 0.417930, CT = 5.263072, GT = 1.000000.

*Amphisphaeria* and *Lepteutypa* separate into two distinct clades with high statistical support from each analysis (100% MP, 100% ML, 1.00 PP). KUMCC 19–0188 and KUMCC 19–0189 strains cluster in *Amphisphaeria* (100% MP, 100% ML, 1.00 PP) which is close affinity to *A. thailandica* (MFLU 18–0794). KUMCC 19–0186 and KUMCC 19–0187 strains are sister to *L. fuckelii* with moderate statistical supports (79% MP, 84% ML, 0.99 PP). Phylogenetic analyses showed poor statistical supports among *Amphisphaeria* species while considerably strong for *Lepteutypa* species.

### Taxonomy

Amphisphaeria yunnanensis L.S. Dissan., J.C. Kang & K.D. Hyde, sp. nov. (FIGURE 2)

*Index Fungorum number*: IF556876, *Facesoffungi number*: FoF 06505 Etymology:—The specific epithet *yunnanensis* refers to the province in which the fungus was collected Holotype:—HMAS 290476 Saprobic on a dead branch. Sexual morph Ascomata 320–385  $\mu$ m high × 380–450  $\mu$ m diam. ( $\overline{x} = 352.5 \times 415 \mu$ m, n = 8), immersed, visible as black spots, solitary, scattered, globose to sub-globose, dark reddish brown, papillate. Ostiole 130–135  $\mu$ m high × 28–32  $\mu$ m diam. ( $\overline{x} = 132.5 \times 30 \mu$ m, n = 6). Peridium 8–18  $\mu$ m ( $\overline{x} = 13 \mu$ m, n = 10), comprising an inner layer of hyaline cells of *textura angularis*, and an outer layer of brown cells of *textura angularis*. Paraphyses 2–4.5  $\mu$ m wide ( $\overline{x} = 3.2 \mu$ m, n = 10), hyaline, few, longer than asci, cellular, constricted septate, guttulate, embedded in a gelatinous matrix, un-branched. Asci 78–93 × 6–9  $\mu$ m ( $\overline{x} = 85.5 \times 7.5 \mu$ m, n = 20), 8-spored, unitunicate, cylindrical, with short pedicel, apically rounded, with a J- apical ring. Ascospores 12–15 × 4–6  $\mu$ m ( $\overline{x} = 13.5 \times 5 \mu$ m, n = 30), overlapping uniseriate, fusiform, guttulate, hyaline when young, brown at maturity, uniseptate, constricted at the septum, smooth-walled. Asexual morph Undetermined.



**FIGURE 1**. Phylogram generated from maximum likelihood (RAxML) based on LSU-ITS matrix. MP and ML bootstrap supports ( $\geq$ 70%) and Bayesian posterior probability ( $\geq$  0.95) are indicated as MP/ML/BYPP. The tree is rooted to *Beltraniella endiandrae* (CBS 137976), *Beltraniopsis neolitseae* (CBS 137974) and *Beltrania pseudorhombica* (CBS 138003). Type strains are in bold and the newly generated strains are in red.

**Culture characteristics:**—Colonies on PDA, reaching 21.5 mm diam., after 2 weeks at 20–25 °C, medium dense, circular to slightly irregular with uneven margin, slightly raised and cottony surface, colony from above: white to pale grey at the margin, greenish-grey at the center; from below: yellowish white at the margin, yellow to brown at the center; mycelium greenish-grey.

**Material examined:**—CHINA, Yunnan province, Qujing (24.668703°N, 104.24653°E), on a dead branch of an unknown host, 06 May 2019, L.S. Dissanayake, DW1137–048 (HMAS 290476, **holotype**; HKAS 107066, **isotype**), ex-type living culture KUMCC 19–0188, CGMCC, additional materials DW1137–049 (HAMS 290477, HKAS 107067), living culture KUMCC 19–0189.



**FIGURE 2.** *Amphisphaeria yunnanensis* (HMAS 290476). a, b. Ascomata on the substrate. c. Vertical section of ascoma. d. Peridium. e. Paraphyses. f–i. Asci. j. J- Apical apparatus. k–m. Ascospores. n. Germinating ascospore. Culture on PDA from, o. above, p. below after 6 weeks. Scale bars:  $c = 100 \mu m$ ,  $f-i = 20 \mu m$ , d,e,  $j-n = 5 \mu m$ .

### Known distribution:-Yunnan Province, China

**Notes:**—Both of our specimens (HMAS 290476 and HAMS 290477) share similar characters typical of *Amphisphaeria* species in having immersed ascomata, 8-spored, unitunicate asci and overlapping uniseriate, brown, uniseptate ascospores. *Amphisphaeria yunnanensis* is morphologically similar to *A. bertiana* Fairm., *A. paedida* (Berk. & Broome), Sacc. and *A. vibratilis* (Fuckel) E. Mull in having J- apical rings. However, *Amphisphaeria bertiana* 

has erumpent or superficial ascomata on a subiculum and *A. paedida* has superficial, coriaceous ascomata, while *A. yunnanensis* has immersed ascomata without a subiculum. *Amphisphaeria vibratilis* comprises with *textura intricata* cells in the peridium and larger ascospores  $(22.5-27.5 \times 6-8.5 \mu m)$  with a mucilaginous sheath, while *A. yunnanensis* has compressed cells of *textura angularis* in the peridium and smaller ascospores  $(12-15 \times 4-6 \mu m)$  without a sheath. *Amphisphaeria yunnanensis* has a close phylogenetic relationship with *A. thailandica*, but this is not supported in all formats of the analyses. However, *A. yunnanensis* differs from *A. thailandica* in having globose to sub-globose, dark reddish brown ascomata, long and narrow ostiole, fusiform, multi-guttulate ascospores. Moreover, *A. yunnanensis* differs from other remaining *Amphisphaeria* species in having narrow and long ostioles and small, fusiform, multi-guttulate ascospores. Significant characteristics among similar taxa are given TABLE 2. Based on phylogenetic evidences and morphological differences, we introduce our new collection as a new species as *A. yunnanensis*.

# Lepteutypa qujingensis L.S. Dissan., J.C. Kang & K.D. Hyde, sp. nov. (FIGURE 3)

#### Index Fungorum number: IF556877, Facesoffungi number: FoF 06506

Etymology:—The specific epithet *qujingensis* refers to the city in which the fungus was collected Holotype:—HMAS 290478

Saprobic on a dead branch. Sexual morph Ascomata 161–222  $\mu$ m high × 525–550  $\mu$ m diam. ( $\overline{x} = 191.5 \times 537.5 \mu$ m, n = 10), immersed, visible as minute dark black spots, flat on the host surface, solitary, scattered, sub-globose and brown. *Peridium* 10–25  $\mu$ m ( $\overline{x} = 17.5 \mu$ m, n =10), comprising an inner layer of hyaline cells of *textura angularis*, the outer layer of reddish brown cells of *textura angularis*. *Paraphyses* 6.5–12  $\mu$ m wide ( $\overline{x} = 9.3 \mu$ m, n = 15), hyaline, few, longer than asci, cellular, constricted at septum, guttulate, embedded in a gelatinous matrix. *Asci* 100–140 × 4.5–8.5  $\mu$ m ( $\overline{x} = 120 \times 6.5 \mu$ m, n = 20), 8-spored, unitunicate, cylindrical, with long pedicel, apically rounded, with a J+ apical ring. *Ascospores* 19–26 × 4–6  $\mu$ m ( $\overline{x} = 22.5 \times 5 \mu$ m, n =35), overlapping uniseriate, straight to slightly curved, fusiform, multi-guttulate, hyaline turning light brown when mature, 5–6-septate, smooth-walled **Asexual morph** Undetermined.

**Culture characteristics:**—Colonies on PDA, reaching 15–20 mm diam., after 2 weeks at 20–25°C, circular, flat, smooth surface, entire edge, slightly wooly, smooth margin, with concentric rings of wooly from above: ash white at the center; from below: light brown at the margin, dark brown at the center; mycelium ash white.

**Material examined:**—CHINA, Yunnan Province, Qujing (24.668703°N, 104.24653°E) on recently dead branch of an unknown host, 06 May 2019, L.S. Dissanayake, DW1137–045 (HMAS 290478, **holotype**; HKAS 107065, **isotype**), ex-type living culture, KUMCC 19–0187, CGMCC, additional material DW1137–046 (HAMS 290471), living culture KUMCC 19–0186. Additional sequence *rpb2*: MN729566.

### Known Distribution:—Yunnan Province, China.

**Notes:**—Both of our specimens (HAMS 290478 and HAMS 290471) share characteristics typical to *Lepteutypa* in having long, cylindrical asci with J+ apical ring and uniseriate, multiseptate, brown ascospores. *Lepteutypa qujingensis* differs from other *Lepteutypa* species by having thin asci and smaller ascospores ( $19-26 \times 4.3-6.3 \mu m$ ). *Lepteutypa qujingensis* is similar in morphology to *L. fuckelii* in having immersed ascomata, J+ apical ring and multiguttulate, hyaline to brown ascospores. However, *L. fuckelii* has ascomata surrounded by grey clypeus and 4-septate, yellowish brown ascospores with a sheath, while *L. qujingensis* has 5–6-septate, brown ascospores without a sheath. Phylogenetic analyses show that *L. qujingensis* is sister to *L. fuckelii* Petr. (79% MP, 84% ML, 0.99 PP, Fig. 1). Significant characteristics among similar taxa are given in TABLE 3. Based on phylogenetic evidences and morphological differences, we introduce *L. qujingensis* as a new species.

### Discussion

We introduce two novel species of Amphisphaeriaceae increasing the total number of *Amphisphaeria* species to 19 and *Lepteutypa* species to 16. Both species are recorded from dead twigs of dicotyledonous plants in Yunnan, China. Even though, *Amphisphaeria* is mostly found from dicotyledonous hosts in temperate regions, several studies introduce species from tropical and monocotyledonous hosts (Hyde *et al.* 1996, Wang 2004, Phookamsak *et al.* 2019, Samarakoon *et al.* 2019).

| Species                    | Sec. data | Known distribution                 | Host and substrate                                             |                                                                                                 | Morphology (µm)                                                  |                                                                                       | References                                             |
|----------------------------|-----------|------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|
|                            |           |                                    |                                                                | Ascomata                                                                                        | Asci                                                             | Ascospores                                                                            |                                                        |
| Amphisphaeria<br>acericola | A         | Italy, Forlì-Cesena                | On branch of <i>Acer campestre</i><br>(Sapindaceae)            | Immersed, $350 \times 275$                                                                      | 100–130 × 8.5–11,<br>J+, bilobed pedicellate                     | 16–24 × 6–8, overlapping uniseriate,<br>ellipsoidal to oval                           | Senanayake <i>et al.</i> (2019)                        |
| A. bertiana                | N/A       | USA, New York                      | In cavities at the end of a rotting log                        | Seated on a subiculum, erumpent/<br>superficial, 350-500 diam.                                  | $110-145 \times 5-6$ , J- apical ring, very long filiform stipe, | $10.5-12.5 \times 4-5$ , 2-cells, smooth wall                                         | Fairm (1905)<br>Wang <i>et al.</i> (2004)              |
| A. depressa                | N/A       | USA, Hawaii,<br>Kaihea             | Cassia bicapsularis<br>(Leguminosae)                           | Poorly developed clypeus, immersed beneath, $220-360 \times 200-310$                            | 84–110 × 8–9, J+ discoid, sub<br>apical ring                     | $16-19 \times 6-7$ , 2-cells, distoseptate, not or slightly constricted at the septum | Petrak (1953)<br>Wang <i>et al.</i> (2004)             |
| A. fallax                  | N/A       | Austria, Weibkirchen               | Quercus robur (Fagaceae)                                       | Developing under a clypeus<br>semi immersed to erumpent, 400–480<br>× 230–260                   | $170-220 \times 12-18$ , J+ discoid, sub apical ring             | 20–26 × 8–12, 2-cells,<br>strongly constricted<br>at the septum                       | De not (1865),Wang <i>et al.</i><br>(2004)             |
| A. flava                   | Y         | Thailand, Chiang<br>Mai, Chang Wat | On a recently dead branch                                      | Immersed, black spots, surrounded by a pale-yellow halo on the surface 225–320 $\times$ 355–470 | $125-175 \times 6.5-14.5$ , J+ discoid apical apparatus          | $13-16 \times 5-7$ , rarely overlapping, hyaline to light brown                       | Samarakoon <i>et al.</i> (2019)                        |
| A. gaubae                  | N/A       | Australia, Jervis Bay              | Dead leaves of <i>Lambertia</i><br><i>formosa</i> (Proteaceae) | Immersed beneath, blackened clypei, $450-520 \times 420-500$                                    | $100-140 \times 10-11$ , J+ sub apical ring narrow wedge shape,  | $12.5-19 \times 5.5-7.5$ , 2- cells, curve and pointed ends                           | Wang et al. (2004)                                     |
| A. lusitanica              | N/A       | Portugal, Figueira<br>da Foz       | Arundo donax<br>(Gramineae)                                    | Immersed beneath a clypeus, 550–620 $\times$ 380–420                                            | J+ sub apical ring wedge-shaped,                                 | $20-28 \times 8-10$ , 2-cells, thin mucilaginous sheath                               | Wang <i>et al.</i> (2004)                              |
| A. mangorvei               | A         | India, Tamil Nadu                  | On intertidal branches and<br>twigs of <i>Suaeda monoica</i>   | Immersed to erumpent, $140 \times 150$                                                          | $80-130 \times 9.5-10$ , J-, apical ring                         | $12-130 \times 9$ 5–10, lacking a mucilaginous sheath                                 | Phookamsak <i>et al.</i> (2019)                        |
| A. multipunctata           | N/A       | New Zealand, Bay<br>of Plenty      | Ctinidia deliciosa<br>(Actinidiaceae)                          | Immersed beneath blackened clypei,<br>320–420 × 220–350                                         | $125-165 \times 7.5-10$ , J+ discoid, sub apical ring            | $15-20 \times 5-7$ , verruculose, rounded ends,                                       | Petr <i>et al.</i> (1923)<br>Wang <i>et al.</i> (2004) |
| A. paedida                 | N/A       | Germany,<br>Konigstein             | Bark of wood                                                   | Superficial sub globose<br>Coriaceous, 350-450                                                  | 140–160 × 8–9, J- apical<br>apparatus                            | $16-18 \times 5-6$ , 2- cell, guttules in each cell                                   | Sacc <i>et al.</i> (1882)<br>Wang <i>et al.</i> (2004) |

.....continued on the next page

| TABLE 2. (C      | ontinued)   |                             |                                                       |                                                                                               |                                                                  |                                                                                                      |                                                            |
|------------------|-------------|-----------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Species          | Seq. data   | Known distribution          | Host and substrate                                    | Ascomata                                                                                      | Morphology ( <i>um</i> )<br>Asci                                 | Ascospores                                                                                           | References                                                 |
| A. pseudoumbrina | V/A         | Italy                       | On bark of Acer campestre<br>(Aceraceae)              | Immersed under a clypeus, $480-600 \times 230-250$                                            | 100–125 × 7.5–8.5, J+ discoid, sub apical ring                   | $14-18 \times 6-7.5$ , 2-cells, rugose-walled                                                        | Saccardo <i>et al.</i> (1873)<br>Wang <i>et al.</i> (2004) |
| A. seriata       | N/A         | USA, Texas,                 | On leaf of <i>Nolina sp.</i><br>(Agavaccae)           | Immersed, 320–380 × 300–360                                                                   | $112.5-150 \times 11-12.5$ , J+ discoid,<br>sub apical ring      | 15.5-20 × 6-8, 2-cells, deeply<br>pigmented at septum, mucilaginous<br>sheath                        | Barr <i>et al.</i> (1996)<br>Wang <i>et al.</i> (2004)     |
| A. sorbi         | A           | Italy, Trento               | On branch of <i>Sorbus</i><br>aucuparia L. (Rosaceae) | Immersed to erumpent, 450–505 ×<br>350–405                                                    | 125–170 $\times$ 9–13, J- apical apparatus                       | $16-24 \times 6-8$ , rarely overlapping,<br>ellipsoidal, thick mucilaginous sheath                   | Liu et al.(2015)                                           |
| A. thailandica   | A           | Thailand, Phayao            | On a recently dead branch                             | Immersed, flat or concave on the host surface, $210-265 \times 410-470$                       | 95–120 × 9.5–16, J- apical<br>apparatus                          | 12.3–15 × 6.9–8.8, bi-guttulate,<br>hyaline to light brown                                           | Samarakoon <i>et al.</i> (2019)                            |
| A. umbrina       | V           | Italy, Flaventino           | On trunk of <i>Ulmus</i><br><i>sp</i> . (Ulmaceae)    | Immersed, erumpent, 560–640 × 400–480                                                         | $150-170 \times 11-13$ , J+ discoid, sub apical ring,            | $18-22 \times 6-8$ , 2-cell long ellipsoidal                                                         | De note (1863)<br>Wang <i>et al.</i> (2004)                |
| A. vibratilis    | N/A         | Canada, British<br>Columbia | On the stem of <i>Prunus sp.</i><br>(Rosaceae)        | Immersed, 720–960 × 400–500                                                                   | $137.5-187.5 \times 10-15$ , J-, no visible ring in mature asci. | 22.5–27.5 × 6–8.5, vertucose,<br>surrounded by a mucilaginous sheath,<br>deeply pigmented at septum, | Mull <i>et al.</i> (1962)<br>Wang <i>et al.</i> (2004)     |
| A. yunnanensis   | A           | China, Yunnan<br>province   | On recently dead branch attach to the host            | Immersed, narrow papillate, 380–450<br>× 320–385, long and narrow ostiole<br>(130.88 × 31.81) | $78-93 \times 6-9$ , J- apical ring                              | $12-15 \times 4-6$ , fusiform, uniseptate, constricted at the septum.                                | This study                                                 |
| • N/A=No         | t available | e, A= Available             |                                                       |                                                                                               |                                                                  |                                                                                                      |                                                            |



**FIGURE 3.** *Lepteutypa qujingensis* (HMAS 290478). a,b. Ascomata on the substrate. c. Vertical section of ascoma. d. Peridium. e. Paraphyses. f–i. Asci. j. Apical ring bluing in Melzer's reagent k–p. Ascospores. Culture on PDA from, q. above, r. below after 6 weeks. Scale bars:  $c = 100 \ \mu m$ ,  $d, e = 5 \ \mu m$ ,  $f-i = 20 \ \mu m$ ,  $j = 5 \ \mu m$ ,  $k-p = 10 \ \mu m$ .

There is very little molecular data available in public data bases for amphisphaeriaceous taxa. The phylogenetic analyses of this study are based on only ITS and LSU due to unavailability of other gene regions. In addition, there is a noticeable instability of the topologies among *Amphisphaeria* species in consecutive phylogenetic analyses (Phookamsak *et al.* 2019, Samarakoon *et al.* 2019, Senanayake *et al.* 2019). However, this may be resolved with future discoveries of species with molecular data.

|                      | -        |                                        |                                                      |                                                                    | Morphology (µm)                               |                                                                                                               | ŝ                     |
|----------------------|----------|----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------|
| opecies              | seq data | Known distribution                     | Host and substrate                                   | Ascomata                                                           | Asci                                          | Ascospores                                                                                                    | Keterences            |
| Lepteutypa alpestris | N/A      |                                        |                                                      | Irumpent, globose<br>440–550 × 15–20                               | $100-110 \times 7.5-15$ apical ring shallow   | 20–27 × 5–7.5<br>3 septa Oblong/ellipsoid reddish browr<br>narrow sheath                                      | 1 Barr (1993)         |
| L. aquatica          | A        | Thailand                               | Submerged decaying wood in<br>a freshwater           | Immersed, sub-globose to<br>depressed globose<br>250–320 × 300–330 | 126–138 × 8–10                                | $15-17 \times 5-7$<br>oblong to reniform straight to slightly<br>curved, guttulate, pale brown                | Luo <i>et al.</i> (2) |
| L. biseptata         | N/A      | East of Goulburn                       |                                                      | Sub-epidermalia, globose<br>160–250 × 30–40                        | $75-105 \times 7-10$                          | $120-165 \times 6-7$<br>1-3 septa Oblong/ellipsoid mucous sheath                                              | Petrak (1954          |
| L. cupressi          | N/A      | Australia                              | ·                                                    | Glogose to suboblate $400 \times 150$                              | 90–165 × 9–12<br>J J+ apical ring             | 14–23 × 6–9<br>3 septa Oblong to ellipsoidal Brown<br>colour                                                  | Swart (1973)          |
| L. fuckelii          | A        | Germany, Nordrhein<br>Westfalen        | On attached branches of <i>Tilia</i> cordata         | Immersed surrounded by grey<br>clype<br>450–570 × 200–400          | 111–155 × 10.5–13.3<br>J+ thin apical ring    | 17.5–22.8 × 6.5–8.0,<br>4 septa Oblong/ narrowly fusiform,<br>hyaline to yellow-brwon narrow<br>mucous sheath | Jaklitsch <i>et a</i> |
| L. fusispora         | N/A      | Hawaiian Island                        | On <i>Wistaria sp.</i>                               | Globos, ellipsoidate<br>200–250 × 60–100                           | 95–115 × 7–8.5                                | $14-24 \times 6.5-8$                                                                                          | Petrak (1953          |
| L. hederae           | N/A      | Switzerland                            | On dead, corticated branches of <i>Hedera helix</i>  | Immersed convex to pulvinate<br>350–700 × 250–600                  | Oblong, apex not containing<br>a ring         | 22–29.2 × 9.2–12.2,<br>ovoid to oblong,                                                                       | Jaklitsch <i>et g</i> |
| L. hexagonalis       | N/A      | Ecuador.                               | On dead trunk of <i>Pinanga sp.</i>                  | Immersed<br>700-800 × 600-700                                      | $180-210 \times 7-10$ ,<br>J+ subepical ring, | $27-32 \times 6-7$ ,<br>3-septate, fusiform                                                                   | Goh <i>et al</i> , (1 |
| L. qujingensis       | A        | Qujing city, Yunnan province,<br>China | On recently dead branches attach to the host         | Immersed,<br>161–222 × 525–550                                     | 103–140 × 4.8–8.3<br>J+ apical ring           | $19-26 \times 4.3-6.3$ ,<br>5-6 septa, thin wall                                                              | This study            |
| L. sabalicola        | N/A      | Florida                                | On Aralia spinosa                                    | Immersed in yellowish areas of<br>substrate<br>260–495 × 130–275   | 44–65 × 7.5–10<br>J- apical ring              | 11–15.5 × 3.5–4.5<br>3-septate oblong/obovoid, reddish<br>brown                                               | Вагг (1993)           |
| L. sambuci           | V        | Germany, Yorkshire                     | On partly decorticated<br>branches of Sambucus nigra | Erumpent,<br>globose<br>400-800 × 250-500                          | 175–228 × 12.3–16.8,<br>J+ apical ring        | $24.5-31.3 \times 9.0-11.2$ , rarely curved, $2-4$ (-6) distoseptate, thick sheath                            | Jaklitsch <i>et a</i> |
| L. ulmicola          | N/A      | Canada                                 | On Ulmus americana                                   | Immersed<br>325-455 × 300-350                                      | 108–150 × 9–11<br>J+ apical ring              | 17–21 × 8–9<br>3 septate ellipsoid/ oblong, light to                                                          | Barr (1993)           |

#### Acknowledgement

This work was funded by grants of the National Natural Science Foundation of China (NSFC Grants Nos. 31670027 & 31460011 & 30870009). Peter E. Mortimer thanks the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants: 41761144055, 41771063 and Y4ZK111B01. Kevin D. Hyde thanks the Thailand Research Fund for a grant, Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion grant number: RDG6130001. Dr. Shaun Pennycook is thanked for the nomenclatural advice. Lakmali S. Dissanayake would like to thank Dr. Saranyapath Boonmee and Dr. D.N. Wanasinghe for valuable suggestions and organizing collecting visits. Mr. D.M.R.B. Dissanayake, Mrs. D.M.P.K. Dissanayake and Prof. K. Yakandawala are thanked for their valuable suggestions.

### References

- Bahl, J., Jeewon, R. & Hyde, K.D. (2004) Apiosporaceae, Clypeosphaeriaceae, Hyponectriaceae, Myelospermataceae: Molecular and morphological assessment of taxonomic hypotheses. *In: The IV Asia- acific Mycological Congress & The IX International Marine* and Freshwater Mycology Symposium. Chiang Mai, Thailand.
- Barr, M.E. & Ramaley, A.W. (1996) Two more species of Amphisphaeria (Xylariales). Mycotaxon 58: 349-351.
- Barr, M.E. (1993) Redisposition of some taxa described by J.B. Ellis. Mycotaxon 46: 45-76.
- Barr, M.E. (1990) Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes. Mycotaxon 39: 43-184.
- Barr, M.E. (1975) Pestalosphaeria, a new genus in the Amphisphaeriaceae. Mycologia 67: 187-194.

https://doi.org/10.1080/00275514.1975.12019740

Crous, P.W., Shivas, R.G., Quaedvlieg, W., van der Bank, M., Zhang, Y., Summerell, B.A., Guarro, J., Wingfield, M.J., Wood, A.R., Alfenas, A.C., Braun, U., Cano-Lira, J.F., García, D., Marin-Felix, Y., Alvarado, P., Andrade, J.P., Armengol, J., Assefa, A., den Breeÿen, A., Camele, I., Cheewangkoon, R., De Souza, J.T., Duong, T.A., Esteve-Raventós, F., Fournier, J., Frisullo, S., GarcíaJiménez, J., Gardiennet, A., Gené, J., Hernández-Restrepo, M., Hirooka, Y., Hospenthal, D.R., King, A., Lechat, C., Lombard, L., Mang, S.M., Marbach, P.A.S., Marincowitz, S., Marin-Felix, Y., Montaño-Mata, N.J., Moreno, G., Perez, C.A., Pérez Sierra, A.M., Robertson, J.L., Roux, J., Rubio, E., Schumacher, R.K., Stchigel, A.M., Sutton, D.A., Tan, Y.P., Thompson, E.H., van der Linde, E., Walker, A.K., Walker, D.M., Wickes, B.L., Wong, P.T.W. & Groenewald, J.Z. (2014) Fungal Planet description sheets: 214–280. *Persoonia* 32: 184–306.

https://doi.org/10.3767/003158514X682395

- De Notaris, G. (1863) Sferiacei Italici. Centuria I. Fascicolo I + II : 1.
- Fairman, C.E. (1905) New or rare Pyrenomycetaceae from western New York. *Proceedings of the Rochester Academy of Science* 4: 215–224.
- Goh, T.K. & Hyde, K.D. (1997) Lepteutypa hexagonalis sp.nov. from Pinanga sp. in Ecuador. Mycological Research 101: 85–88. https://doi.org/10.1017/S0953756296002249
- Hongsanan, S., Maharachchikumbura, S.S.N, Hyde, K.D., Samarakoon, M.C., Jeewon, R., Zhao, Q., Al, A.M., Ali-Sadi, A.M. & Bahkali, A.H. (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. *Fungal Diversity* 84: 25–41.
- Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- Hyde, K.D., Norphanphoun, C., Maharachchikumbura, S.S.N., Bhat, D.J., Jones, E.B.G., Bundhun, D., Chen, Y.J., Bao, D.F., Boonmee, S., Calabon, M.S., Chaiwan, N., Chethana, K.W.T., Dai, D.Q., Dayarathne, M.C., Devadatha, B., Dissanayake, A.J., Dissanayake, L.S., Doilom, M., Dong, W., Fan, X.L., Goonasekara, I.D., Hongsanan, S., Huang, S.K., Jayawardena, R.S., Jeewon, R., Karunarathna, A., Konta, S., Kumar, V., Lin, C.G., Liu, J.K., Liu, N.G., Luangsa-ard, J., Lumyong, S., Luo, Z.L., Marasinghe, D.S., McKenzie, E.H.C., Niego, A.G.T., Niranjan, M., Perera, R.H., Phukhamsakda, C., Rathnayaka, A.R., Samarakoon, M.C., Samarakoon, S.M.B.C., Sarma, V.V., Senanayake, I.C., Shang, Q.J., Stadler, M., Tibpromma, S., Wanasinghe, D.N., Wei, D.P., Wijayawardene, N.N., Xiao, Y.P., Yang, J., Zeng, X.Y., Zhang, S.N. & Xiang, M.M. (2020) Refined families of Sordariomycetes. *Mycosphere* 11: 305–1059. https://doi.org/10.5943/mycosphere/11/1/7
- Hyde, K.D., Kang, J.C. & Kong, R.Y.C. (1996) Fungi from palms. XXX. Notes on *Amphisphaeria* species described from palms and a description of *A. umbrina*. *Nova Hedwigia* 63: 101–108.
- Jaklitsch, W.M., Gardiennet, A. & Voglmayr, H. (2016) Resolution of morphology based taxonomic delusions: Acrocordiella, Basiseptospora, Blogiascospora, Clypeosphaeria, Hymenopleella, Lepteutypa, Pseudapiospora, Requienella, Seiridium and Strickeria. Persoonia

37: 82–105.

https://doi.org/10.3767/003158516X690475

- Jayasiri, S.C., Hyde, K.D., Abd-Elsalam, K.A., Abdel-Wahab, M.A., Ariyawansa, H.A., Bhat, J., Buyck, B., Dai, Y.C., Ertz, D., Hidayat,I., Jeewon, R., Jones, E.B.G., Karunarathna, S.C., Kirk, P., Lei, C., Liu, J.K., Maharachchikumbura, S.S.N., McKenzie, E., GhobadNejhad, M., Nilsson, H., Pang, K.L., Phookamsak, R., Rollins, A.W., Romero, A.I., Stephenson, S., Suetrong, S., Tsui, C.K.M., Vizzini, A., Wen, T.C., De Silva, N.I., Promputtha, I. & Kang, J.C. (2015) The faces of fungi database: fungal names linked with morphology, molecular and human attributes. *Fungal Diversity* 74: 18–357. https://doi.org/10.1007/s13225-015-0351-8
- Jeewon, R., Liew, E.C.Y. & Hyde, K.D. (2003) Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences. *Mycological Research* 107: 1392–1402. https://doi.org/10.1017/S095375620300875X
- Kang, J.C., Kong, R.Y.C. & Hyde, K.D. (2002) Phylogeny of Amhisphaeriaceae (*sensu stricto*) and related taxa revisited based on nrDNA sequences. *Mycotaxon* 81: 321–330.
- Kang, J.C., Hyde, K.D. & Kong, R.Y.C. (1999a) Studies on the Amphisphaeriales: The Amphisphaeriaceae (sensu stricto). Mycological Research 103: 53–64.

https://doi.org/10.1017/S0953756298006650

- Kang, J.C., Hyde, K.D. & Kong, R.Y.C. (1999b) Studies on the Amphisphaeriales: The genera excluded from the Amphisphaeriaceae, Cainiaceae, and Clypeosphaeriaceae. *Fungal Diversity* 2: 135–151. https://doi.org/10.1007/BF02464294
- Katoh, K., Rozewicki, J. & Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Briefings in Bioinformatics* bbx108. https://doi.org/10.1093/bib/bbx108
- Kirk, P.M., Cannon, P.F., Minter, D.W. & Stalpers, J.A. (2008) Ainsworth & Bisby's dictionary of the fungi, 10th edn. CABI, Wallingford.

https://doi.org/10.1079/9780851998268.0000

- Kishino, H. & Hasegawa, M. (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. *Journal of Molecular Evolution* 29: 170–179. https://doi.org/10.1007/BF02100115
- Larget, B. & Simon, D.L. (1999) Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees. *Molecular Biology and Evolution* 16: 750–759.

https://doi.org/10.1093/oxfordjournals.molbev.a026160

- Liu, J.K., Hyde, K.D., Jones, E.B.G., Ariyawansa, H.A., Bhat, D.J., Boonmee, S., Maharachchikumbura, S.S.N., McKenzie, E.H.C., Phookamsak, R., Phukhamsakda, C., Shenoy, B.D., Abdel-Wahab, M.A., Buyck, B., Chen, J., Chethana, K.W.T., Singtripop, C.,Dai, D.Q., Dai, Y.C., Daranagama, D.A., Dissanayake, A.J., Doilom, M., D'souza, M.J., Fan, X.L., Goonasekara, I.D., Hirayama, K., Hongsanan, S., Jayasiri, S.C., Jayawardena, R.S., Karunarathna, S.C., Li, W.J., Mapook, A., Norphanphoun, C., Pang, K.L., Perera, R.H., Peršoh, D., Pinruan, U., Senanayake, I.C., Somrithipol, S., Suetrong, S., Tanaka, K., Thambugala, K.M., Tian, Q., Tibpromma, S., Udayanga, D., Wijayawardene, N.N., Wanasinghe, D., Wisitrassameewong, K., Zeng, X.Y., Abdel-Aziz, F.A., Adamčík, S.,Bahkali, A.H., Boonyuen, N., Bulgakov, T., Callac, P., Chomnunti, P., Greiner, K., Hashimoto, A., Hofstetter, V., Kang, J.C., Lewis, D., Li, X.H., Liu, X.Z., Liu, Z.Y., Matsumura, M., Mortimer, P.E., Rambold, G., Randrianjohany, E., Sato, G., Sri-Indrasutdhi, V.,Tian, C.M., Verbeken, A., von Brackel, W., Wang, Y., Wen, T.C., Xu, J.C., Yan, J.Y., Zhao, R.L. & Camporesi, E. (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. *Fungal Diversity* 72: 1–197. https://doi.org/10.1007/s13225-015-0324-y
- Luo, Z.L., Hyde, K.D., Liu, J.K., Maharachchikumbura, S.S.N., Jeewon, R., Bao, D.F., Bhat, D.J., Lin, C., Li, W., Yang, J., Liu, N.G., Lu, Y.Z., Jayawardena, R.S., Li, J.F. & Su, H.Y. (2019) Freshwater Sordariomycetes. *Fungal Diversity* 99: 451–660. https://doi.org/10.1007/s13225-019-00438-1
- Maharachchikumbura, S.S.N., Hyde, K.D., Jones, E.B.G., McKenzie, E.H.C., Bhat, J.D., Dayarathne, M.C., Huang, S.K., Norphanphoun, C., Senanayake, I.C., Perera, R.H., Shang, Q.J., Xiao, Y., D'souza, M.J., Hongsanan, S., Jayawardena, R.S., Daranagama, D.A., Konta, S., Goonasekara, I.D., Zhuang, W.Y., Jeewon, R., Phillips, A.J.L., Abdel-Wahab, M.A., Al-Sadi, A.M., Bahkali, A.H., Boonmee, S., Boonyuen, N., Cheewangkoon, R., Dissanayake, A.J., Kang, J., Li, Q.R., Liu, J.K., Liu, X.Z., Liu, Z.Y., Luangsa-ard, J.J., Pang, K.L., Phookamsak, R., Promputtha, I., Suetrong, S., Stadler, M., Wen, T. & Wijayawardene, N.N. (2016) Families of Sordariomycetes. *Fungal Diversity* 79: 1–317. https://doi.org/10.1007/s13225-016-0369-6
- Marincowitz, S., Crous, P.W., Groenewald, J.Z. & Wingfield, M.J. (2008) Microfungi occurring on Proteaceae in the Fynbos. *CBS Biodiversity Series* 7: 1–166.

Müller, E. & Arx, J.A. (1962) Die Gattungen der didymosporen Pyrenomyceten. *Beiträge zur Kryptogamenflora der Schweiz* 11: 1–922. Nylander, J.A.A. (2004) *MrModeltest* 2.0. Program distributed by author. Evolutionary Biology Centre, Uppsala University.

Ono, Y. & Kobayashi, T. (2003) Notes on new and noteworthy plant-inhabiting fungi from Japan (2): *Griphosphaerioma zelkovicola sp. nov.* with *Sarcostroma* anamorph isolated from bark of *Zelkova serrata*. *Mycoscience* 44: 109–114.

https://doi.org/10.1007/S10267-003-0093-4

Petrak, F. (1954) Beiträge zur Pilzflora Australiens. Sydowia 8: 192–220.

Petrak, F. (1953) Beitrage zur Pilzflora von Hawaii. Sydowia 7: 381-393.

Petrak, F. (1923) Mykologische notizen. VI 202. Uber Sphaeria apiculata curr. Annales Mycologici 21: 182-335.

- Phookamsak, R., Hyde, K.D., Wanasinghe, D.N., Jeewon, R., Bhat, D.J., Maharachchikumbura, S.S.N., Raspé, O., Karunarathna, S.C., Hongsanan, S., Tennakoon, D.S., Machado, A.R., Firmino, A.L., Ghosh, A., Karunarathna, A., Mešić, A., Dutta, A.K., Thongbai, B., Devadatha, B., Norphanphoun, C., Senwanna, C., Wei, D., Pem, D., Wang, G., Jiang, H-B., Madrid, H., Lee, H.B., Goonasekara, I.D., Manawasinghe, I.S., Kušan, I., Cano, J., Gené, J., Li, J., Das, K., Acharya, K., Anil Raj, K.N., Latha, K.P.D., Chethana, K.W.T., He, M., Dueñas, M., Jadan, M., Martín, M.P., Samarakoon, M.C., Doilom, M., Dayarathne, M.C., Papizadeh, M., Raza, M., Park, M.S., Telleria, M.T., Chaiwan, N., Matočec, N., de Silva, N.I., Pereira, O.L., Manimohan, P., Abeywickrama, P., Uniyal, P., Shang, Q., Bhatt, R.P., Perera, R.H., Alvarenga, R.L.M., Nogal-Prata, S., Singh, S.K., Vadthanarat, S., Oh, S-Y., Fazeli, S.A.S., Huang, S.K., Konta, S., Paloi, S., Jayasiri, S.C., Jeon, S.J., Mehmood, T., Gibertoni, T.B., Nguyen, T.T.T., Singh, U., Thiyagaraja, V., Sarma, V.V., Dong, W., Yu, X-D., Lu, Y.Z., Lim, Y.W., Chen, Y., Tkalcec, Z., Luo, Z.L., Camporesi, E., Bulgakov, T.S., Dissanayake, A.J., Senanayake, I.C., Dai, D.Q., Daranagama, D.A., Thambugala, K.M., Zhang, H., Cai, L., Zhao, R.L., Lumyong, S., Boonmee, S., Wen, T.C., Zhang, Z.F., Khan, S., Promputtha, I., Mortimer, P.E. & Xu, J. (2019) Fungal diversity notes 933–1040: taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Diversity* 95: 1–273. https://doi.org/10.1007/s13225-019-00421-w
- Rambaut, A. & Drummond, A. (2012) *FigTree: Tree Figures drawing tool*, version 1.2. 2. Institute of Evolutionary Biology, University of Edinburgh.
- Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. *Journal of Molecular Evolution* 43: 304–311.

https://doi.org/10.1007/BF02338839

Ronquist, F. & Huelsenbeck, J.P. (2012) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572-1574.

https://doi.org/10.1093/bioinformatics/btg180

- Saccardo, P.A. (1882) Sylloge Pyrenomycetum. Sylloge Fungorum 1: 1-768
- Saccardo, P.A. (1873) Fungi Veneti novi vel critici. Nuovo Giornale Botanico Italiano 5: 269-298.
- Samarakoon, M.C., Liu, J.K., Hyde, K.D. & Promputtha, I. (2019) Two new species of *Amphisphaeria* (Amphisphaeriaceae) from northern Thailand. *Phytotaxa* 391: 207–217.

https://doi.org/10.11646/phytotaxa.391.3.4

- Samarakoon, M.C., Hyde, K.D., Promputha, I., Hongsanan, S., Ariyawansa, H.A., Maharachchikumbura, S.S.N., Daranagama, D.A., Stadler, M. & Mapook, A. (2016) Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). *Mycosphere* 7: 1746–1761. https://doi.org/10.5943/mycosphere/7/11/9
- Samuels, G.J., Muller, E. & Petrini, O. (1987). Studies in the Amphisphaeriaceae (*sensu lato*) 3. New species of *Monographella* and *Pestalosphaeria* and two new genera. *Mycotaxon* 28: 473–499.
- Senanayake, I.C., Lian, T.T., Mai, X.M., Camporesi, E., Zeng, Y.J., Tian, S.L. & Xie, N. (2019) Taxonomy and phylogeny of *Amphisphaeria acericola sp. nov.* from Italy. *Phytotaxa* 403: 285–292. https://doi.org/10.11646/phytotaxa.403.4.2
- Senanayake, I.C., Maharachchikumbura, S.S.N., Hyde, K.D., Bhat, J.D., Jones, E.B.G., McKenzie, E.H.C., Dai, D.Q., Daranagama, D.A., Dayarathne, M.C., Goonasekara, I.D., Konta, S., Li, W.J., Shang, Q.J., Stadler, M., Wijayawardene, N.N., Xiao, Y.P., Norphanphoun, C., Li, Q., Liu, X.Z., Bahkali, A.H., Kang, J.C., Wang, Y., Wen, T.C., Wendt, L., Xu, J.C. & Camporesi, E. (2015) Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). *Fungal Diversity* 73: 73–144. https://doi.org/10.1007/s13225-015-0340-y
- Silvestro, D. & Michalak, I. (2012) RaxmlGUI: a graphical front-end for RAxML. *Organisms Diversity and Evolution* 12: 335–337. https://doi.org/10.1007/s13127-011-0056-0
- Swart, H.J. (1973) The fungus causing cypress canker. *Transactions of the British Mycological Society* 61: 71–79. https://doi.org/10.1016/S0007-1536(73)80089-0

Swofford, D.L. (2002) PAUP\*: phylogenetic analysis using parsimony, version 4.0 b10. Sinauer Associates, Sunderland.

Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238–4246.

- Wang, Y.Z., Aptroot, A. & Hyde, K.D. (2004) Revision of the genus Amphisphaeria. Hong Kong SAR, China. Fungal Diversity Research Series 13: 1–168.
- White, T.J., Bruns, T., Lee, J. & Taylor, S.B. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In:* Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) *PCR protocols: a guide to methods and applications: 315–322.* Academic Press, San Diego, California, USA.

https://doi.org/10.1016/B978-0-12-372180-8.50042-1

- Wijayawardene, N.N., Hyde, K.D., Lumbsch, H.T., Liu, J.K., Maharachchikumbura, S.S.N., Ekanayaka, A.H., Tian, Q. & Phookamsak, R. (2018) Outline of Ascomycota: 2017. *Fungal Diversity* 88: 167–263. https://doi.org/10.1007/s13225-018-0394-8
- Wijayawardene, N.N., Hyde, K.D., Al-Ani, L.K.T., Tedersoo, L., Haelewaters, D., Rajeshkumar, K.C., Zhao, R.L., Aptroot, A., Leontyev, D.V., Saxena, R.K., Tokarev, Y.S., Dai, D.Q., Letcher, P.M., Stephenson, S.L., Ertz, D., Lumbsch, H.T., Kukwa, M., Issi, I.V., Madrid, H., Phillips, A.J.L., Selbmann, L., Pfliegler, W.P., Horváth, E., Bensch, K., Kirk, P., Kolaříková, Z., Raja, H.A., Radek, R., Papp, V., Dima, B., Ma, J., Malosso, E., Takamatsu, S., Rambold, G., Gannibal, P.B., Triebel, D., Gautam, A.K., Avasthi, S., Suetrong, S., Timdal, E., Fryar, S.C., Delgado, G., Réblová, M., Doilom, M., Dolatabadi, S., Pawłowska, J., Humber, R.A., Kodsueb, R., Sánchez-Castro, I., Goto, B.T., Silva, D.K.A., De Souza, F.A., Oehl, F., Da Silva, G.A., Silva, I.R., Błaszkowski, J., Jobim, K., Maia, L.C., Barbosa, F.R., Fiuza, P.O., Divakar, P.K., Shenoy, B.D., Castañeda-Ruiz, R.F., Somrithipol, S., Karunarathna, S.C., Tibpromma, S., Mortimer, P.E., Wanasinghe, D.N., Phookamsak, R., Xu, J., Wang, Y., Fenghua, T., Alvarado, P., Li, D.W., Kušan, I., Matočec, N., Maharachchikumbura, S.S.N., Papizadeh, M., Heredia, G., Wartchow, F., Bakhshi, M., Boehm, E., Youssef, N., Hustad, V.P., Lawrey, J.D., Santiago, A.L.C.M.A., Bezerra, J.D.P., Souza-Motta, C.M., Firmino, A.L., Tian, Q., Houbraken, J., Hongsanan, S., Tanaka, K., Dissanayake, A.J., Monteiro, J.S., Grossart, H.P., Suija, A., Weerakoon, G., Etayo, J., Tsurykau, A., Kuhnert, E., Vázquez, V., Mungai, P., Damm, U., Li, Q.R., Zhang, H., Boonmee, S., Lu, Y.Z., Becerra, A.G., Kendrick, B., Brearley, F.Q., Motiejűnaitë, J., Sharma, B., Khare, R., Gaikwad, S., Wijesundara, D.S.A., Tang, L.Z., He, M.Q., Flakus, A., Rodriguez-Flakus, P., Zhurbenko, M.P., McKenzie, E.H.C., Stadler, M., Bhat, D.J., Liu, J.K., Raza, M., Jeewon, R., Nassonova, E.S., Prieto, M., Jayalal, R.G.U., Yurkov, A., Schnittler, M., Shchepin, O.N., Novozhilov, Y.K., Liu, P., Cavender, J.C., Kang, Y., Mohammad, S., Zhang, L.F., Xu, R.F., Li, Y.M., Dayarathne, M.C., Ekanayaka, A.H., Wen, T.C., Deng, C.Y., Lateef, A.A., Pereira, O.L., Navathe, S., Hawksworth, D.L., Fan, X.L., Dissanayake, L.S. & Erdoðdu, M. (2020) Outline of Fungi and fungi-like taxa. Mycosphere 11: 1060–1456. https://doi.org/10.5943/mycosphere/11/1/8
- Winter, G. (1884–1886; '1886') Ascomyceten: Gymnoasceen und Pyrenomyceten. *Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz* 21: 1–928.
- Wu, Z.H., Wang, T.H., Huang, W. & Ou, Y.B. (2001) A simplified method for chromosome DNA preparation from filamentous fungi. *Mycosystema* 20: 575–577.