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Abstract

Faberia is a perennial herbaceous member of Asteraceae that is mainly distributed in central and southwestern China. Nuclear
(ITS) and plastid (psbA—trnH, rbcL, matK, and trnl—F) sequences representing five Faberia species were analyzed with
maximum parsimony, maximum likelihood, and Bayesian inference, all of which strongly supported the monophyly of
Faberia. Faberia nanchuanensis, F. cavaleriei, and F. faberi from central China form a well-supported clade. Additionally, /.
sinensis and F. thibetica from southwestern China also form a well-supported clade. Incongruence between nuclear and plastid
fragments was interpreted as hybridization or limited character evolution in the plastid DNA. Faberia may have descended
from hybridization between Lactucinae and Crepidinae. Besides phylogenetic results, Faberia nanchuanensis is recorded for
the first time from Hunan Province, and F. sinensis from the Tibet Autonomous Region.
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Introduction

Faberia Hemsl. is a perennial herbaceous genus of Cichorieae in Asteraceae. Ling & Shih (1997) recognized four
species in the genus and listed another three as potential but imperfectly known members because of a lack of
available material. Shih & Kilian (2011) included in the genus seven species that were distributed in central and
southwestern China. Faberia is characterized by a campanulate or cuneiform involucre, a slender style with
papillae or setae, and a brown or pale yellow to white pappus of equal bristles. All species of Faberia occur in
moist places in woods, or in rocky, grassy places along streams or under waterfalls.

The genus Faberia was established based on F sinensis Hemsl., a species endemic to southwestern China
(Forbes & Hemsley 1888). Taxonomists held different opinions on the delimitation of this genus. Some botanists
considered Faberia a separate genus (Hoffmann 1890—-1894, Beauverd 1910, Léveillé 1914, Anthony 1934, Shih
1995, Shih & Chen 1996, Ling & Shih 1997, Kilian et al. 2009), while others reduced Faberia into Lactuca L.
(Franchet 1895) or into Prenanthes L. (Babcock 1947, Lauener 1976, Sennikov & Illarionova 2001, Lack 2007).
Sennikov & Illarionova (2008) transferred Youngia racemifera (Hook. f.) Babc. et Stebbins, Y. silhetensis (DC.)
Babc. & Stebbins, and Y. silhetensis subsp. bhutanica Grierson & Spring. into Faberia. Shih & Kilian (2011)
associated Prenanthes glandulosa Dunn with Faberia. Moreover, Kilian et al. (2009) and Shih & Kilian (2011)
merged Faberiopsis Shih & Y. L. Chen with Faberia. Liu et al. (2012) strongly supported Faberia as a separate
genus and merged Faberiopsis with Faberia based on karyological analyses.

Previous studies were restricted to morphological and chromosomal characters; no molecular approach have
been undertaken for Faberia. DNA data, particularly DNA sequences, greatly contributed to understanding of the
phylogeny, evolution, and taxonomy of Asteraceae (Jansen & Kim 1996). In this study, we used nuclear DNA
(nrDNA; the internal transcribed spacer of ribosomal DNA; ITS) and plastid DNA (cpDNA; psbA—trnH, rbclL,
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matK, and trnl—F) sequences to (1) test the monophyly of Faberia and (2) reconstruct its phylogeny and
systematic position.

Materials and methods

Taxon sampling

We sampled five species of Faberia for this molecular study (Table 1). We were not able to obtain any material
for F ceterach Beauverd and F. lancifolia J. Anthony. Warionia saharae Benth. et Coss. was chosen as an outgroup
in line with Kilian ez al. (2009). To evaluate the monophyly, phylogeny, and systematic position of Faberia,
sequences of its close relatives in Cichorieae (representing Crepidinae, Hypochaeridinae, Hyoseridinae,
Lactucinae, Microseridinae, Cichoriinae, Hieraciinae, Scolyminae, and Scorzonerinae) were obtained from
GenBank (Table 1). Living plants were cultivated in a greenhouse at the Kunming Institution of Botany. Voucher
specimens were deposited in KUN.

DNA extraction and sequencing

Total DNA was extracted from about 15 mg of silica-gel dried leaf material using the CTAB method of Doyle
& Doyle (1987) and the Plant Genomic DNA Extraction (Bioteke, Beijing, China) following the manufacturer’s
instructions. Polymerase chain reaction (PCR) amplifications were performed using 10 ng of genomic DNA, 4
pmol of each primer (see below), 0.5 U Taq polymerase (Promega, Fitchburg, WI, USA), and 2.5 mM MgCl, in a
volume of 20 pL under the following conditions: 3 min at 94°C; followed by 30 cycles of 30 s at 94°C, 30 s at
50°C, and 1 min at 72°C, and then a final 10 min extension at 72°C.

Primers used in the amplification and sequencing were as follows. For the nuclear ITS region: primers ITS1
and ITS4 (White et al. 1990). The plastid psbA—trnH: primers psbA-F and trnH-R (Sang et al. 1997, Hamilton et al.
1999); rbcL: primers Z1 and 1024R (Zurawski et al. 1981, Olmstead ef al. 1993); matK: primers 3F and 1R (Sang
et al. 1997); trnl—F: primers Tab-c and Tab-f (Taberlet et al. 1991).

The PCR products were purified using the polyethylene glycol (PEG) precipitation procedure following the
manufacturer’s protocols. Cycle sequencing was carried out using the following profile: 35 cycles of 97°C for 15 s,
50°C for 5 s, and 60°C for 4 min. Dideoxy cycle sequencing was performed using the chain-termination method
and the ABI PRISM BigDye v.3.1 reaction kit (Applied Biosystems, Foster City, CA, USA) following the
manufacturer’s protocols. Products were run on an ABI 3100 genetic analyzer (Applied Biosystems) using the
manufacturer’s protocols. The sequence fragments from forward and reverse primers were assembled using
Sequencer v.4.1.4 (GeneCodes Corporation, Ann Arbor, MI, USA). The sequences were aligned with ClustalX
v.1.83 (Thompson et al. 1997). Manual adjustments were made using Bioedit v.7.0.5 (Hall 1999).

Phylogenetic analyses

Phylogenetic trees were reconstructed using maximum parsimony (MP), maximum likelihood (ML), and
Bayesian inference (BI). Parsimony analyses were performed with heuristic searches of 1,000 replicates with
random stepwise addition using tree bisection—reconnection (TBR) branch swapping, MulTrees, and the Collapse
option selected in PAUP* v.4.0b10 (Swofford 2003). Gaps were treated either as missing data or as new characters.
All characters and character state transformations were weighted equally. The bootstrap percentages (BP) were
calculated from 1,000 replicates using a heuristic search with simple addition with the TBR and MULPARS
options implemented (Felsenstein 1985).

Before the model-based analytical approaches, the model of DNA evolution that best fit the sequence data was
explored. A hierarchical likelihood ratio test as implemented in the software MrModeltest (Nylander 2004)
suggested the generalized time reversible model (GTR + I + G) fit the data best. In the following ML and BI
analyses the substitution models and parameters were adjusted according to the estimates of MrModeltest.
Maximum likelihood analyses were performed in Garli v.0.96 beta (Zwickl 2006) and BI in MrBayes v. 3.1.2
(Huelsenbeck & Ronquist 2001). The Bayesian Markov chain Monte Carlo (MCMC) algorithm was run for
2,000,000 generations with four incrementally heated chains, starting from random trees and sampling every 100
generations. The first 2000-5000 trees were discarded as burn-in, depending on when chains appeared to have
become stationary. The remaining trees were assumed to represent the posterior probability (PP) distribution and
used to calculate a majority rule consensus tree with PP values on the nodes in PAUP*.
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To evaluate the congruence of the nuclear and plastid datasets, we first employed the incongruence length
difference (ILD) test (Farris e al. 1994). The ILD test was conducted with 1000 replicates of heuristic search using
TBR branch swapping with 10 random sequence additions in PAUP* v.4.0b10 (Swofford 2003).

]

FIGURE 1. Distribution of Faberia in central and southwestern China based on field observations and herbarium collections.

Results

The aligned sequences of the ITS region generated a data matrix of 678 base pairs (bp) with 261 parsimony-
informative sites (261/678 = 38.50%), while the psbA—trnH data set had 515 aligned bp, 54 of which were
parsimony-informative (54/515 = 10.49%). The aligned rbcL data set was 1,358 bp in length, with 24 parsimony-
informative sites (24/1358 = 1.78%). The matK data set had 879 aligned bp, 48 of which were parsimony-
informative sites (48/879 = 5.46%). The trnL—F data set had 888 aligned bp, 43 of which were parsimony-
informative site (43/888 = 4.84%). We combined all the plastid data in our analyses. The combined cpDNA matrix
data had 3,804 characters including 248 parsimony informative sites (248/3804 = 6.52%). The ILD test indicated
that chloroplast sequences (psbA—trnH, rbcL, matK and trnl—F) and nuclear ITS data sets were incongruent (P =
0.01). The strict consensus tree of the nuclear ITS sequences is shown in Fig. 2, while that of the chloroplast
sequences (psbA—trnH, rbcL, matK and trnl—F) is shown in Fig. 3.

The monophyly of Faberia was well supported, with BP = 100 and PP = 1.00 (Figs. 2 and 3). Two clades
corresponding to their distributions were supported within Faberia (Fig. 3): F. nanchuanensis, F. cavaleriei H.
Léveillé and F faberi (Hemsl.) N. Kilian from central China formed a strongly supported clade (PP = 0.99), while
F sinensis and F. thibetica (Franch.) Beauverd from southwestern China formed another robust clade (PP = 0.99).
The clades recovered with cpDNA data were inconsistent with the ntDNA tree (Fig. 2). Faberia was located at
basal-most position of Lactucinae in the ntDNA tree, but was derived within Crepidinae in the cpDNA tree. Fig. 4
represents a phylogram of Faberia and its relatives based on ITS data. Faberia species formed a closely knit clade
with very little sequence divergence.
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FIGURE 2. Strict consensus tree of Faberia and relatives based ITS sequences. Tree length = 1227 steps, CI = 0.50, RI = 0.55, and
RC =0.28. Bootstrap values greater than 50% are above the lines and Bayesian posterior probabilities are below the lines.
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FIGURE 3. Strict consensus tree of Faberia and relatives based on the combined chloroplast sequences. Tree length = 624, CI1 = 0.83,
RI=0.67, and RC = 0.56. Bootstrap values greater than 50% are above the lines and Bayesian posterior probabilities are below the
lines.
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Discussion

Monophyly of Faberia

Both ntDNA and cpDNA (Figs. 2 and 3) data indicated that all sampled species of Faberia formed a well-
supported monophyletic group. Morphological evidence for monophyly included campanulate or cuneiform
involucres, slender styles with papillae or sweeping hairs, and a brown or pale yellow to white pappus of equal
bristles. A chromosome comparison also supported the monophyly of the genus. All species have 2n = 34 with the
karyotype of Stebbins’s 2B type (Liu ef al. 2012).

Another argument supporting the monophyly of Faberia is that the species formed a closely knit clade with
very little internal sequence divergence (Fig. 4). The pattern suggests a rapidly speciating group that diverged into
new habitats throughout a recent radiation (Chen et al. 2005), which offered new opportunities for colonization,
establishment, and morphological modification. Based on the Flora Reipublicae Popularis Sinicae and Flora of
China, Faberiopsis nanchuanensis is endemic to Jinfoshan, Chongqing; and Faberia sinensis is restricted to
Yunnan and Sichuan provinces. In our study, F. nanchuanensis is recorded for the first time also from Hunan
Province (WGYO007, WGY010, WGYO021), and F. sinensis from the Tibet Autonomous Region (nie3157). We
inferred that this may be related to fragmented areas which were formerly wider. Our results, based on extensive
sampling from within its distribution areas, suggested that Faberiopsis was nested within Faberia (Figs. 2 and 3).

Phylogeny and systematic position of Faberia

Seven species of Faberia have been reported to be restricted to central and southwestern China (Shih & Kilian
2011; Fig. 1). In our analyses, five species from these two regions formed a robustly supported clade (PP = 1.00,
BP =100, Fig. 2; PP = 1.00, MB = 94, Fig. 3). Two clades within Faberia corresponded to their distributions in
central and southwestern China (Fig. 3). Faberiopsis nanchuanensis, Faberia cavaleriei, and F. faberi from central
China formed a robust clade (PP = 0.99, Fig. 3) of morphologically diverse species. Their stem leaves varied from
ovate to elliptic to lanceolate and the ligules from five-toothed to trisect including a series of intermediate forms.
Faberia sinensis and F. thibetica from southwestern China formed another strongly supported clade (PP = 0.99,
Fig. 3) that was characterized by rosette leaves. However, the cpDNA tree was inconsistent with the nrDNA tree
(Fig. 2). We inferred that Faberia appers to be severely differentiated.

The phylogenetic position and limits of Faberia are not well resolved. Faberia was synonymized with Lactuca
(Franchet 1895) or Prenanthes (Babcock 1947, Lauener 1976, Sennikov & Illarionova 2001, Lack 2007) in the
subtribe Lactucinae. Sennikov & Illarionova (2008) placed Youngia racemifera, Y. silhetensis, and Y. silhetensis
subsp. bhutanica into Faberia. Shih & Kilian (2011) associated Prenanthes glandulosa with Faberia. In the
present study, the ntDNA and cpDNA trees were incongruent, with Faberia being basal-most within Lactucinae in
the nrDNA tree, and nested within Crepidinae in the cpDNA tree. One possible interpretation of this incongruence
could be hybridization in the nrDNA region or limited character evolution in plastid DNA (ikinci 2011), which is
supported by morphological and cytological evidence. Based on petal color, most species of Lactucinae have
yellow, purple red, or blue flowers, while those of Crepidinae are yellow. Faberia flowers are reddish to bluish-
purple. We inferred that petal color in Lactucinae and Crepidinae may be a fundamental character. The basic
chromosome number of Faberia is x = 17 (Liu et al. 2012), which is a very rare number in Cichorieae. The
chromosome numbers of 61 genera in Cichorieae range from x = 3 to x = 11. Notably, x = 17 was also present in
Warionia Benth. et Coss. (Katinas et al. 2008) and the American species of Lactuca canadensis L. and L.
graminifolia Michx. (Babcock et al. 1937; Tomb et al. 1978, Dolezalova et al. 2002) was also found. Nevertheless,
Katinas et al. (2008) indicated that Warionia was so unique that it belonged to a new subtribe, Warioniinae. In
addition, they inferred that this genus was distantly related to Faberia. The karyotypes of the American Lactuca
species with x = 17 were found rather asymmetric, consisting of predominantly subterminal centromeric (st)
chromosomes (Babcock et al. 1937, Dolezalova et al. 2002), thus having been also remarkably different from
Faberia. Babcock et al. (1937) argued that the American Lactuca species with x = 17 had probably descended
through hybridization between the diploid x = 8 and x = 9 species, followed by polyploidization. It is of great
importance to distinguish the origin of the species with basic chromosome number x = 17 from the closest relative
of Faberia. Moreover, the most common basic number in Lactucinae and Crepidinae are x = 9 and x = 8,
respectively. In conclusion, our results suggest that the origin of x = 17 in Faberia was similar to that in Lactuca;
Faberia may have descended through hybridization between Lactucinae and Crepidinae.
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